Managed aquifer recharge utilizing riverbank filtration and groundwater transfer and injection: A potential technology for sustainable groundwater-irrigated agroecosystems

by

Andy O'Reilly

Daniel Wren, Martin Locke, William B. Rossell | USDA Agricultural Research Service,
National Sedimentation Laboratory

June E. Mirecki | U.S. Army Corps of Engineers, Jacksonville District

roundwater Protection Council
ASR-MAR in Agriculture
3 October 2022

Partnerships

USDA ARS – Research lead, funding, and O&MU.S. Army Corps of Engineers – Design,construction, and O&M

Extensive stakeholder support:

- Delta Council
- Delta Farmers Advocating Resource Management
- Mississippi Department of Environmental Quality
- Mississippi Farm Bureau Federation
- Mississippi Soil and Water Conservation Commission
- USDA Natural Resources Conservation Service
- U.S. Geological Survey
- Yazoo Mississippi Delta Joint Water Management District

Why Sustainable Aquifer Management?

- Sustainable groundwater is a prerequisite for sustainable development
- Managed Aquifer Recharge (MAR) technology can support sustainable management of aquifers

Figure 1. Percentage of groundwater-related targets per SDG

SOURCE: Guppy, L., Uyttendaele, P., Villholth, K. G., Smakhtin, V. 2018. *Groundwater and Sustainable Development Goals: Analysis Of Interlinkages*. UNU-INWEH Report Series, Issue 04. United Nations University Institute for Water, Environment and Health, Hamilton, Canada.

Managed aquifer recharge (MAR)

- > Three general types of recharge systems:
 - Surface infiltration, e.g. basins
 - Vadose-zone infiltration, e.g., wells, trenches, galleries
 - Direct injection with wells
- Alternative water sources (AWS)
 - use non-groundwater sources
 - Stormwater harvesting

SOURCE: California Environmental **Protection Agency**

- Surface water (riverbank filtration)
- Reclaimed water (treated wastewater)

SOURCE: Water Conserv II facility, Orlando, Florida

Second highest GW withdrawals in the United States

- The Mississippi River Valley alluvial aquifer (MRVAA) had the second highest groundwater withdrawals of any principal aquifer in the U.S. of 12.1 Bgal/day
- ➤ In the humid southeastern U.S, we get a lot of rain still can have imbalances between aquifer inflows (recharge) and natural outflows and pumpage

THE MISSISSIPPI DELTA...

Source: https://www.bbking.com/gallery/

Source: http://www.mississippibluestravellers.com/ mississippi-freedom-trail/

- > Birthplace of the blues and other uniquely American musical genres
- Extreme hardship due to the history and enduring legacy of slavery, sharecropping, segregation, and racism and the unpredictability of the Mississippi River itself
- ➤ Major producer of food, fuel, and fiber products, yet many communities are suffering from pervasive and long-term economic depression
- ➤ Increased water security thorough sustainable management of the MRVAA would support a sustainable agroecosystem and economic opportunity in the Delta

(The Delta) STUDY **AREA** Mississippi Project area Legend 20 Year Net Change **EYMD**

Source: YMD Joint Water Management District, 2014 Water Level Survey

Mississippi Delta – A groundwater-irrigated agroecosystem under stress

- \rightarrow 3,000 \rightarrow 21,000 irrigation wells from 1980's to today
- Pumpage 1.61 Bgal/day in 2015
- ➤ 3.3 Million ac-ft of GW loss within the cone of depression from 1987 to 2009
- Aquifer injection and storage identified as a MAR technology to potentially reverse groundwater depletion
 ISF

Groundwater Transfer and Injection Pilot Project

- 1) Extract
 groundwater of
 improved quality
 via riverbank
 filtration
- 2) *Transfer* water to area of greater groundwater depletion
- 3) *Inject* water into aquifer storage
- 4) Withdraw groundwater as needed using existing infrastructure

Project objectives

- Pilot facility to assess feasibility
- Identify sustainable injection rate and O&M requirements
- Is this a viable path toward sustainability in the region?

Extensive soybean and corn fields surrounding injection well site (looking south)

System configuration

Backflush discharge into Lake Henry

Extraction and Injection sites at Shellmound, Mississippi

System characteristics

- > \$1.9 million construction costs
- ➤ One extraction well with variable frequency drive (up to 1,500 gpm)
- Two injection wells, each with permitted capacity 750 gpm
- > 16-inch diameter wells
 - Extraction well: 63–113 ft depth of withdrawal
 - Injection wells: 80–120 ft depth of injection
- Submersible pumps in both injection wells for backwash (1,200 gpm)

Operational tests

- ➤ <u>Injection Period #1, 3-month test</u>:
 - April 14 July 12, 2021
 - Injected total of 550 ac-ft
 - Average injection rate 730 gpm/well (total 2.1 MGD; minimum daily mean river flow is 378 MGD)
 - Well clogging, leaks, and rehabilitation

- Injection Period #2, 6-month test:
 - February 8 August 31, 2022
 - Injected total of 575 ac-ft
 - Two wells (570 gpm/well); alternating wells (600 gpm/well) began May 13
 - Backflushed twice per week
 - Successfully minimized well clogging

Some challenges...

- ➤ Natural *high iron concentrations*
 - Biofouling of injection wells
 - Discharge of backflush water to Lake Henry exceeds 1 mg/L total iron limit in NPDES permit

- Sand boils and leakage of water at land surface at injection wells
- Sinkhole at extraction well
- Decreasing specific capacity of extraction well possibly due to sinkhole and reduced recharge from river during low stage
 GWPC Ag-ASR-MAR, 3 Oct 2022 | A.M. O'Reilly, USDA-ARS

Sand boils and well rehabilitation

- ➤ Most-permeable injection zones *clogged* with iron bacteria causing *increased pore-water pressure*
- Exceeded buoyant weight of overburden
- > USACE conducted oxalic acid rehabilitation of both injection wells Sept. 22–28, 2021
- > Specific capacity returned to ~95% initial value (~35–45) gpm/ft, May 2021); now (Aug 2022) ~130% initial value

Injection Well B before rehab

Airborne electromagnetic geophysical survey by USGS shows complex geological heterogeneity

- Variations in lithology likely contributed to soil piping at injection wells (& extraction well)
- Higher resistivity (yellow and warmer colors) are more sandy texture sediments
- Heterogeneity a key control on groundwater flow and quality

Source: Burton, B.L., Minsley, B.J., Bloss, B.R., Rigby, J.R., Kress, W.H., and Smith, B.D., 2019, Airborne electromagnetic, magnetic, and radiometric survey, Shellmound, Mississippi, March 2018: U.S. Geological Survey data release, https://doi.org/10.5066/P9D4EA9W
GWPC Ag-ASR-MAR, 3 Oct 2022 | A.M. O'Reilly, USDA-ARS

Groundwater impacted by system operation

- > 17 Observation wells
- Monitor hourly groundwater level since January 2020
- Collect samples for monthly lab groundwater quality during injection since March 2021

Groundwater levels vary by season, withdrawals, and injection

Water level impacts larger from injection than extraction

 Water level change 54 days into Injection Period 1 (June 7)

Groundwater mound up to 7 ft high

1/1

Groundwater depression up to 5 ft deep

 Depression smaller than mound likely due in part to recharge by river water

Large water quality changes during riverbank filtration, Small GW quality changes during injection

- River oxic, high TSSGW suboxic/anoxic, low TSS
 - River: Diss. O₂ 6+ mg/L
 - Wells: Diss. O_2 <0.3 mg/L
 - River → GW: TSS ~10x decrease
- ➤ High Iron concentration
- ➤ Low **Arsenic** concentration. USEPA drinking water limit 0.01 mg/L
- Overall, small changes in MRVAA water quality
- Larger changes during second injection period?

March and November 2021 sampling events
Observation wells: Median & Minimum-Maximum range

Current Status and Future Work

- ➤ Pull pumps in all wells, video log, assess condition, and perform maintenance
- Determine best O&M practices for safe injection rate and backflush frequency
- Assess environmental and hydrological sustainability of the technology
 - Regional modeling USGS
 - Local-scale modeling, Hydrogeology, and Geochemistry – USDA-ARS and Univ. of Mississippi
- Assess technical and economic feasibility of a larger scale implementation

