

Evolution of Geologic Carbon Sequestration: Opportunity for Process Improvement

- Modern push for geologic sequestration of supercritical CO₂ for countering global warming
- Historical use of CO₂ gas injection for enhanced oil recovery (EOR) since 1972 (U.S. DOE)
- Must submit EPA permit application for injection of CO₂ via Class VI injection well that protects USDWs
- Still optimizing process only a few issued Class VI injection well permits in the U.S.; many applications in development

Technical Objective How might we be able to detect CO₂ leakage through testing and monitoring of groundwater?

- Site-specific USDW monitoring programs are required during all project phases.
- Studying and understanding sitespecific aquifer geochemistry is important for limiting the cost and complexity of the testing and monitoring program.

Mt. Simon Sandstone: A World Class Carbon Sequestration Target

- Mt. Simon Sandstone (Cambrian) is the target injection zone in Illinois
 - Deep saline aquifer
- Focus of research for Illinois Basin Decatur Project
- First two successful Class VI injection wells
- Mahomet Valley Aquifer System = solesource aquifer in central and eastcentral Illinois
 - Overlies the Mt. Simon in some areas and may need monitoring for future targets

Existing Class VI Wells

*Figure adapted from the Midwest Geological Sequestration Consortium (2005) and Illinois State Water Survey

Watseka E1.2 IROQUOIS Hoopeston • Gibson City Rantoul Champaign E9 Urbana VERMILION CHAMPAIGN Springfield • SANGAMON Mahomet Aquifer Adapted from Univ. of IL Prairie Research Institute/Illinois State Water Survey

Existing Class VI Wells

Mahomet Valley Aquifer System, IL

- Data source: Panno et al. (1994): Hydrochemistry of the Mahomet Bedrock Valley Aquifer, East-Central Illinois: Indicators of Recharge and Ground-Water Flow
- Ten samples major and minor cations, anions, trace elements, pH, Eh

Study Design - Use existing data to detect CO₂ leakage through speciation of groundwater:

- Thermodynamic modeling using Visual MINTEQ 3.1
- Entered known system variables for the 10 samples from the Mahomet Valley Aquifer System and established a base case pCO₂
- Simulated the effect of increasing the pCO₂ on the geochemical composition of the waters
- Examined species distribution, saturation indices, and equilibrated mass distribution for responses to increasing pCO₂

Example Compositions of Mahomet Valley Aquifer Waters

- Calcium carbonatedominated waters, with some variation
- Focus here on samples E2 (sulfate-dominant) and E8 (chloridedominant) to see if different responses occur
- All samples give similar results

in Moles per liter

System Variables vs. pCO₂

- Sharp initial decrease in pH
- pH decrease levels off as majority of carbonate is converted to carbonic acid
- No change in ionic strength with pCO₂ increase indicates predominance of neutral species

 $CO_2(g) + H_2O \Leftrightarrow H_2CO_3(aq)$

Species Distribution vs. pCO₂

- Note high initial bicarbonate (HCO_3^-) concentration and progressive decrease in concentration of bicarbonate compounds as pCO_2 increases.
- Progressive increase in carbonic acid (H₂CO₃).
- Shows conversion of carbonate and bicarbonate into carbonic acid.

Trace Element Species Distribution vs. pCO₂

- Note high initial hydrogen arsenate (HAsO $_4^{2-}$) concentration and progressive decrease in concentration as pCO $_2$ increases.
- Progressive increase in dihydrogen arsenate (H₂AsO₄-).
- Shows conversion of hydrogen arsenate into dihydrogen arsenate (and also into arsenic acid in very small concentrations).

Carbonate Mineral Saturation Indices vs. pCO₂

- Carbonate mineral saturation indices decrease logarithmically with increasing pCO₂.
- Increasing potential to dissolve any carbonate in the aquifer solids and alter the framework of the aquifer pore space.

Summary of Case Study Results

As pCO₂ increases:

- Groundwater becomes more acidic,
- Carbonate and bicarbonate are converted into carbonic acid,
- Hydrogen arsenate is converted into dihydrogen arsenate, and additionally into arsenic acid, and
- Silicate and sulfate SI's are unaffected, while carbonate SI's strongly decrease.

Recommendations for Monitoring Programs

- Monitoring program should be constructed based on the outcome of site-specific geochemical and flow and transport modeling.
- 2. As more site-specific data are obtained during the operational phase, the models should be updated and their predictions re-examined.
- 3. Alternative methods (e.g., isotopic and dissolved trace gases) exist and should be considered when the monitored unit has low total dissolved solids.

Recommendations for Monitoring Programs

- 4. For relatively dilute waters (i.e., Mahomet Aquifer System), changes in pH, total dissolved carbonate, and strong-complexing anions will be the strongest geochemical indicators of initial CO₂ leakage
 - For these dilute aquifers, even small variations in composition can lead to false positives in the monitoring network.
 - Establishing representative baseline is key to a cost-effective and robust testing and monitoring program.
 - Optimizing the monitoring parameter list to **maximize statistical power** in the monitoring network is also key.