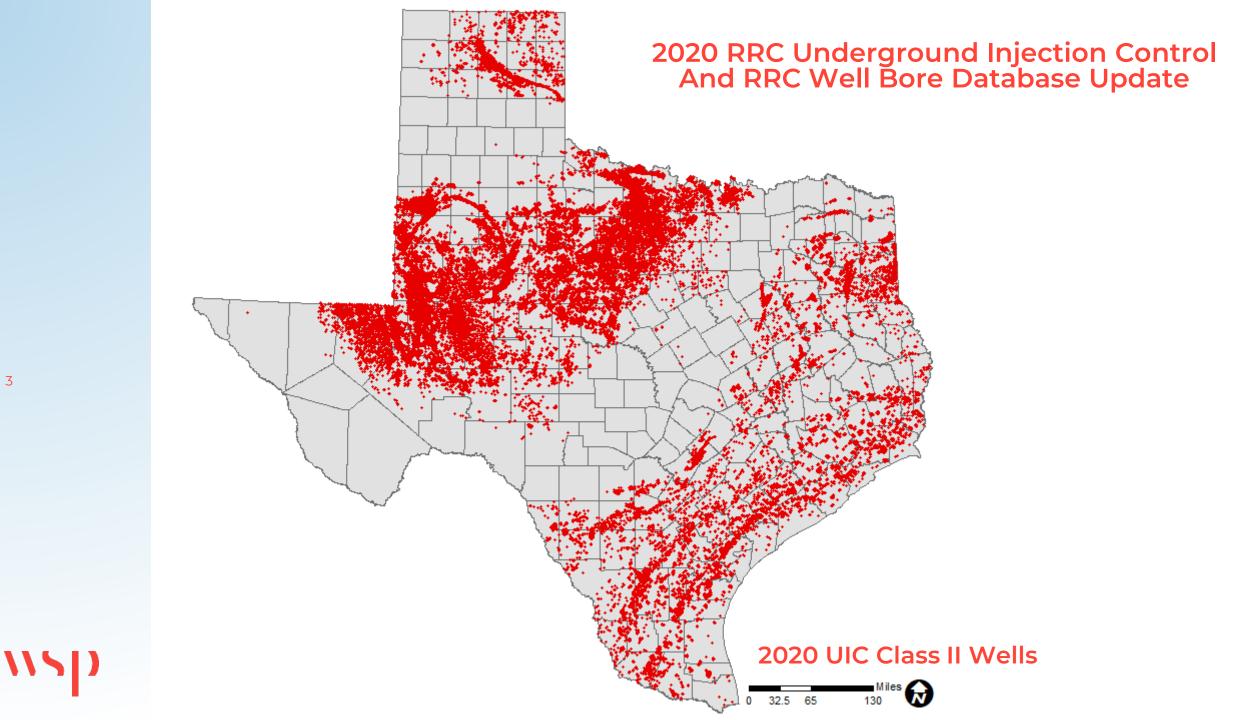
A State-Wide Automated WebBased Tool for Estimating Injectate Migration from for Class II Wells in Texas

Texas Water

GUSTAVSON ASSOCIATES GEOLOGISTS - ENGINEERS - ECONOMISTS - APPRAISERS Member of WSP

TWDB Contract # 2000012453

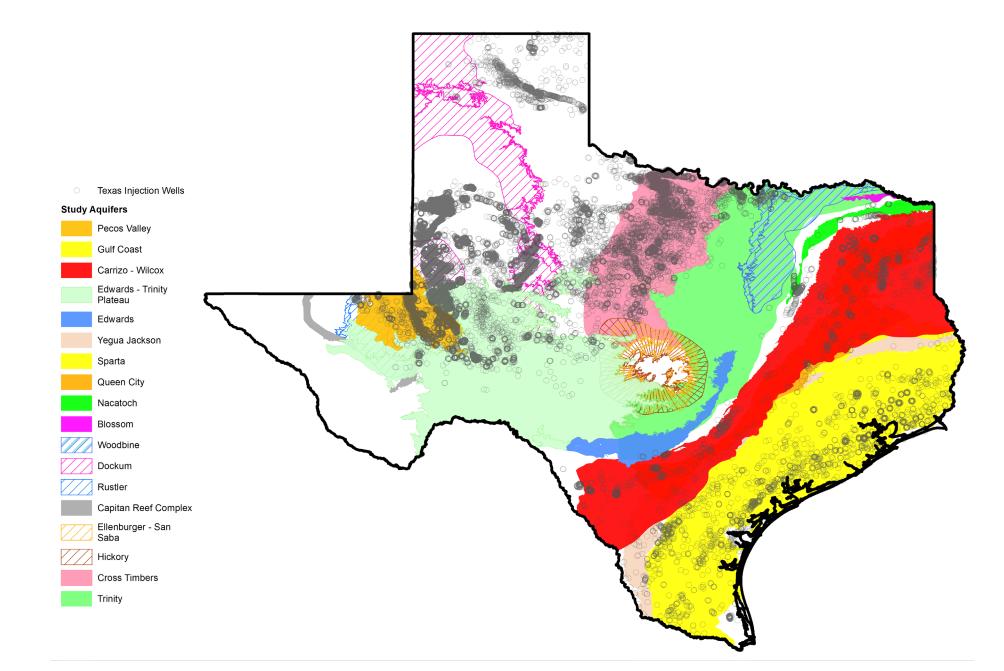

GWPC Forum June 23, 2022

Rohit R. Goswami, PhD, PE RRG Professional Engineering, LLC

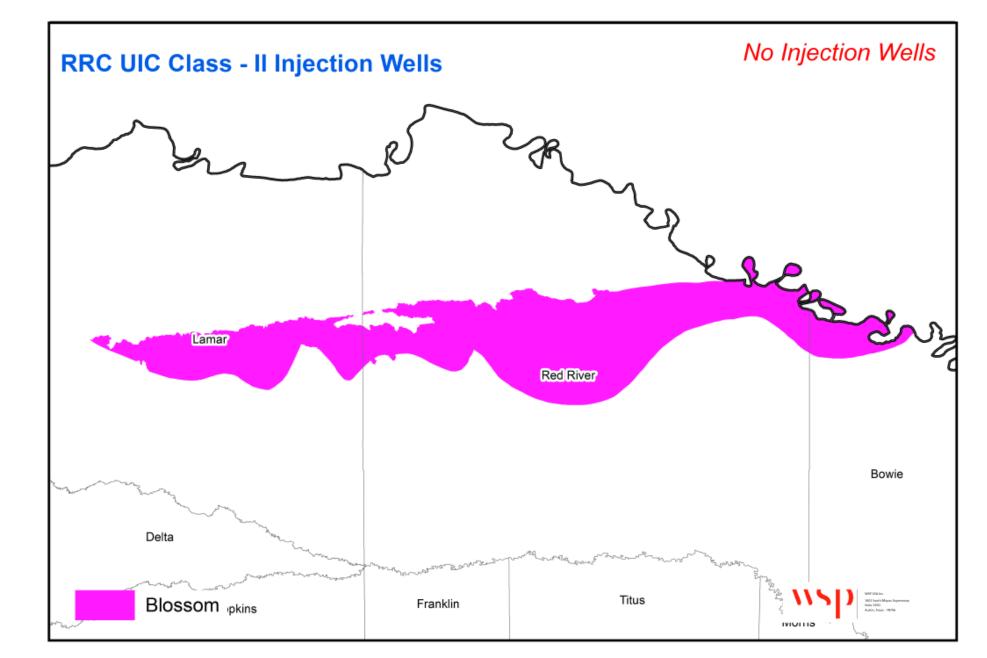
Acknowledgements

- Vivek Bedekar¹
- Chris Neville¹
- Chris Bente²
- Juan Acevedo^{2, 3(formerly)}
- Alysa Suydam³
- Evan Strickland³
- Jack Sharp, PhD⁴
- Technical Advisory Group⁵
- 1 S.S. Papadopulos & Associates, Inc., Rockville, MD 20852
- 2 WSP USA, Inc.
- 3 Texas Water Development Board, Austin TX, 78701
- 4 Consulting Hydrogeologist, Austin, TX 78759
- 5 Acknowledged in the final report submitted to the TWDB

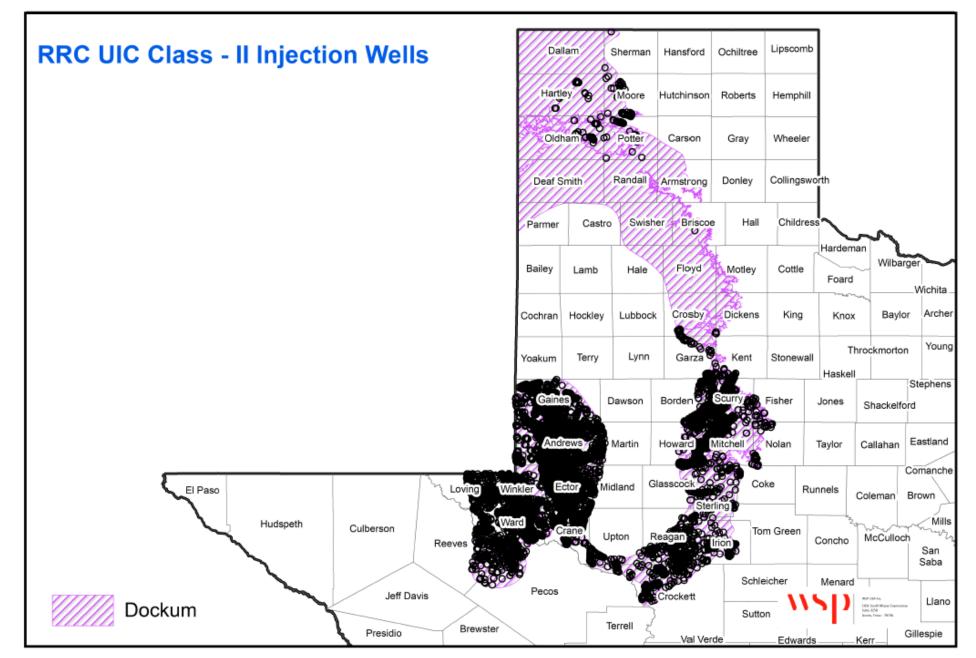
Background

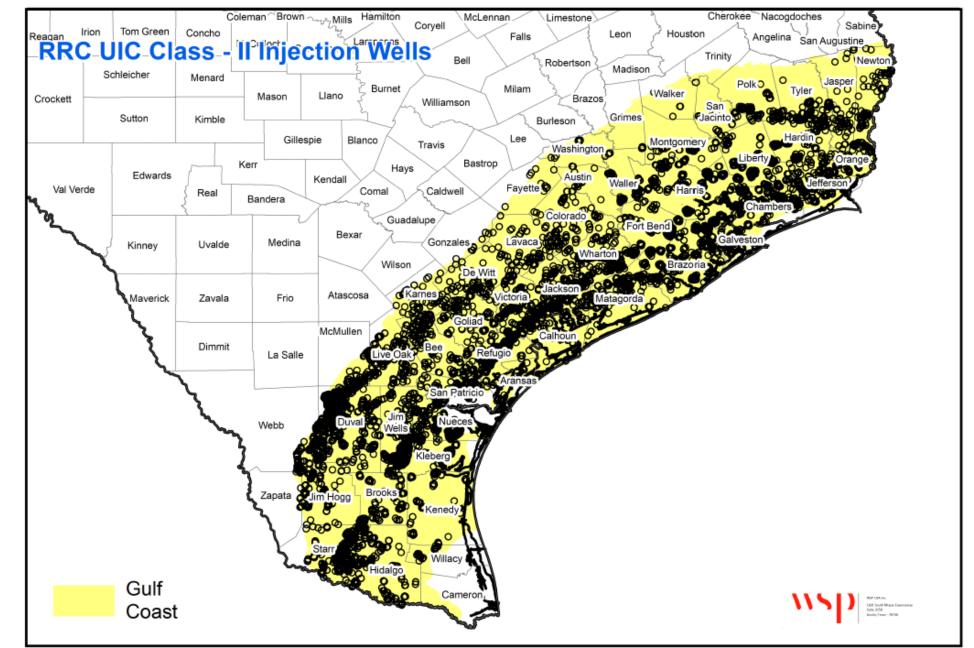

- Brackish Groundwater Production Zones (BGPZs)
- Objective
 - Injectate migration from Class II wastewater injection wells
 - 30 to 50 year periods
- Criteria
 - Scientifically defensible
 - Reproducible
- Technical advisory group (Workgroup)

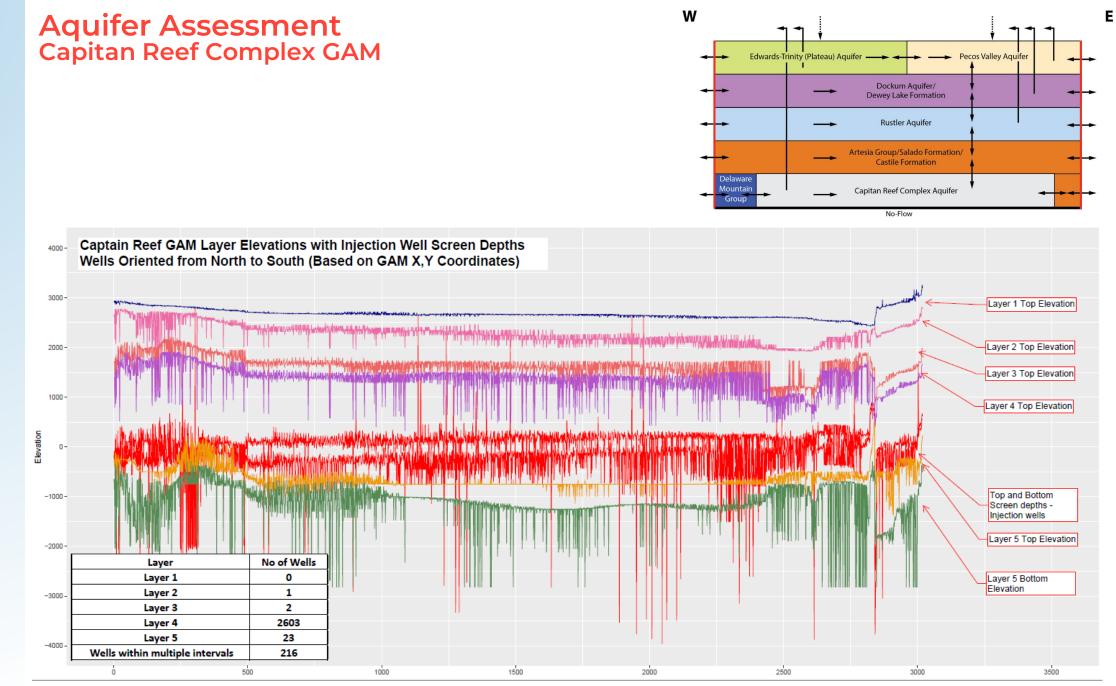
Literature Review


- Few studies addressing specific questions
 - General background
 - Suggestions from TWDB/Workgroup
- Reviewed 150+ articles
- Key issues
 - protection of aquifers
 - seismic activity impacts
 - Injectate clogging formation

— Wide variety of strata suitable for wastewater injection.


Aquifer Assessment


Aquifer Assessment Maps



Aquifer Assessment Maps

Aquifer Assessment Maps

Groundwater Database (GWDB)

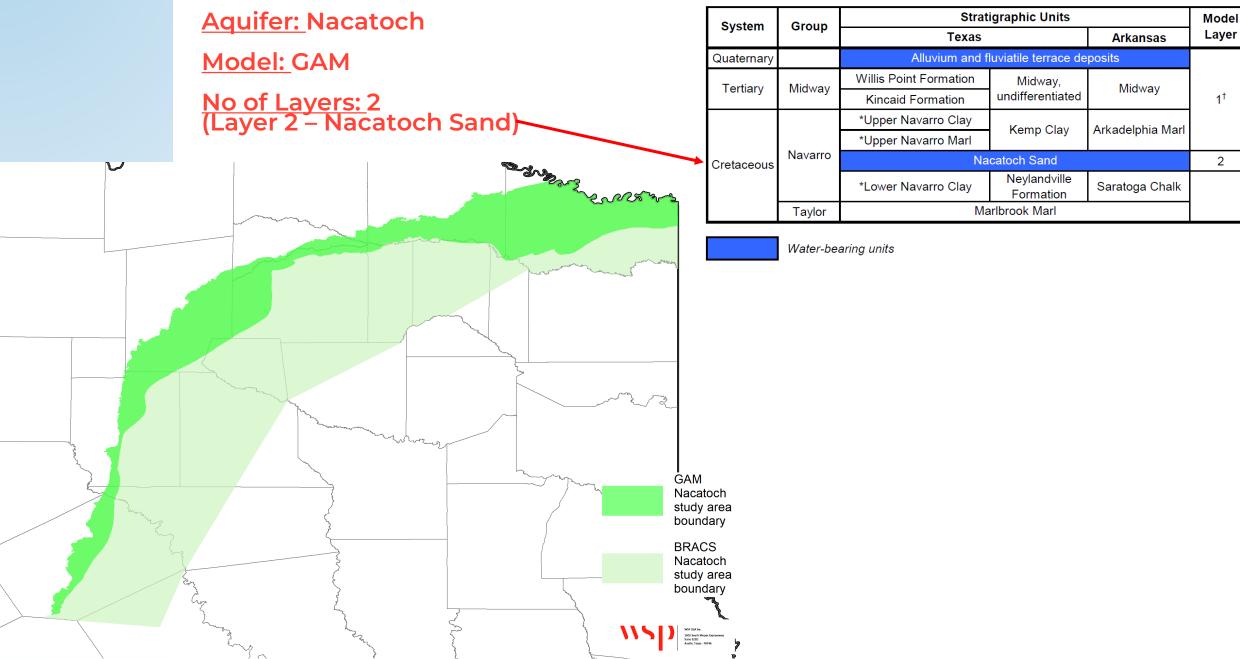
https://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp

- Drain
- Observation
- … ✔ Oil or Gas
-✔ Other (see remarks)✔ Recharge
- 🗹 Recharg
- Seisining
- Iest Hole
- 🗹 Waste Disposal
- Withdrawal of Water
- ✔ (Blanks)

 (Select All) Air Conditioning Aquaculture Commercial Desalination De-watering Domestic Fire Industrial Industrial (cooling) Institution Irrigation Monitor Other Plugged or Destroyed Power Public Supply Recreation Rig Supply Stock Unknown Unused Withdrawal of Water (Blanks)

- Fields

- Well ID
- Coordinates
- Aquifer screened
 - Method of determining which aquifer well is screened in
 - No blank entries, but some cells have values of "Unassigned" or "Other"
- Land surface Elevation
 - Method of determining land surface elevation (DEM, interpolated from topo, etc)
 - No blank entries
 - Well depth
- Well Type
- Well Use
- Water Quality
- Water Levels
- Many Others


- Total GWDB Wells

- 140,458 wells in provided database (.txt file)
 - 22,507 wells have aquifer "Unassigned" or "Other"
- 140,458 wells in provided shapefile

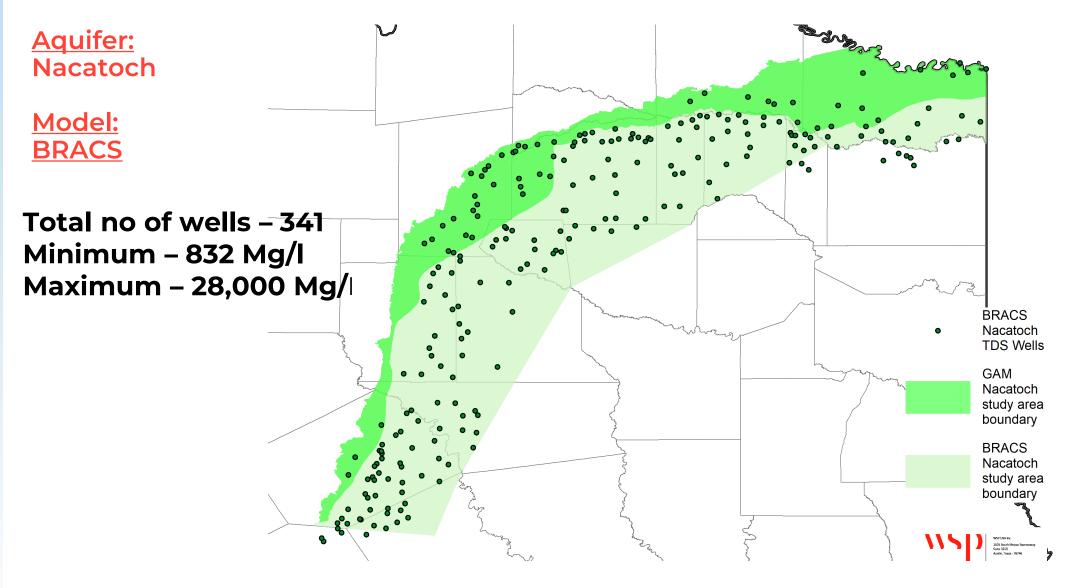
Wells in Nacatoch Study Area

- 2,352 wells in Nacatoch study area
- 410 with aquifer = "Nacatoch Sand"
- 321 with aquifer = "Not Applicable", "Unknown", etc
 - Can maybe look at "WellDepth" or other fields to see if we can make a determination

Aquifer Parameters Assessment

Aquifer Parameters Assessment: Summary of Hydraulic Properties used in the GAM Model

Aquifer: Nacatoch


Model: GAM

	Specific Capacity (gpm/ft)	Transmissivity (gal/day-ft)	Hydraulic Conductivity (ft/day)
Average	1.22	1,686	4.98
Maximum	13.80	13,127	56.60
Minimum	0.04	206	0.49
Median	0.50	1,220	2.95

Layer	Horizontal Hydraulic Conductivity (ft/day)	Vertical Hydraulic Conductivity (ft/day)	Specific yield (-)	Specific Storage (-)
1	0.01 - 1	$1x10^{-4} - 1x10^{-3}$	0.01 - 0.03	$1x10^{-8} - 1x10^{-5}$
2	0.1 - 9.5	$1 x 10^{-3} - 0.9$	0.01 - 0.03	$1x10^{-7} - 1x10^{-5}$

wsp

Aquifer Parameters Assessment: Water Quality TDS

wsp

2020 RRC UIC Data Update

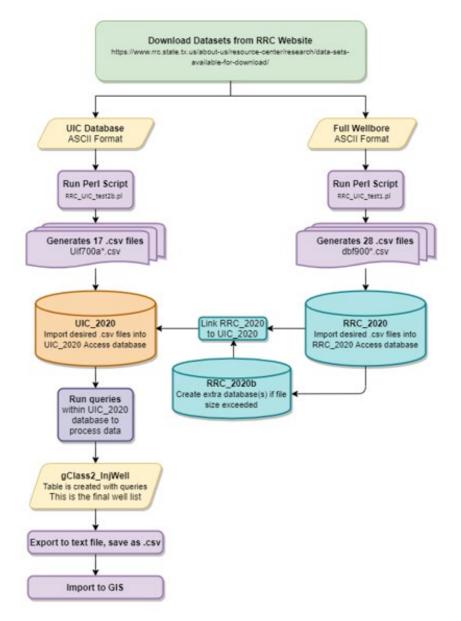
UIC Inventory Permit Information UIC Permit Remarks UIC Monitor Information H-10 (Monthly Monitor) Information H-10H (Monthly Monitor) Information Monitor Remarks H-5 (Pressure Testing) Information H-5 Remarks **UIC Enforcement Information** Enforcement Action Information Enforcement Action Other Data Enforcement Remarks H-10H Monitor Annual Information

H-10 Violation Information

(1	2	3	4	5	6	7
	Table Name:	gClass2InjWell	uif700a_root	uif700a_rmk	uif700a_montr	uif700a_monH10H	uif700a_mon_rm
	Dictionary Key (RRC_TAPE_RECORD_ID):	N/A (this table is an assemblage of relevant fields from other existing tables. This is the	01	02	03	04/05	(empty) 06
		"primary" table used to create the Class II well shapefile)		02	05	04/05	(cmpty) oo
	Fields:	API_FULL	RRC_TAPE_RECORD_ID	RRC_TAPE_RECORD_ID	RRC_TAPE_RECORD_ID	RRC_TAPE_RECORD_ID	RRC_TAPE_RECORD_ID
		TYPE_INJ	UIC_CNTL_NO	UIC_CNTL_NO	UIC_CNTL_NO	UIC_CNTL_NO	UIC_CNTL_NO
		INJ_ZNE_TD	UIC_O_G_TYPE	UIC_O_G_TYPE	UIC_O_G_TYPE	UIC_O_G_TYPE	UIC_O_G_TYPE
	Legend	INJ_ZNE_BD	UIC_LEASE_ID	UIC LEASE ID	UIC_LEASE_ID	UIC_LEASE_ID	UIC_LEASE_ID
N	o highlight indicates table already exists with	T_Z_BD	UIC_DIST	UIC_DIST	UIC_DIST	UIC_DIST	UIC_DIST
	displayed fields in Access database	S_Z_TD	UIC_WELL_NO	UIC_WELL_NO	UIC_WELL_NO	UIC_WELL_NO	UIC_WELL_NO
Dat	ta exists in .csv file, but has not been analyzed	S_Z_BD	UIC_OPER	UIC_API_FULL	UIC_API_FULL	UIC_API_FULL	UIC_API_FULL
	or imported into Access database	ACTIVE	UIC_CNTY_NO	UIC_REMARKS_RMK	UIC_MONTR_W_STATUS	MN_H10H_CCYY	MN_REMARKS_TYPE
		LETTER_DT	UIC_API_NO	UIC_REMARKS_LINE	UIC_MONTR_SW	MN_H10H_MONTH	MN_REMARKS
		CANCEL_DT	UIC_API_FULL	UIC_REMARKS_TYPE	UIC_MONTR_FW	MN_H10H_MAX_HYDROCARB_PSIG	
		W3_DATE	UIC_FIELD_NO	UIC_REMARKS	UIC_MONTR_FRAC_WATER	MN_H10H_MAX_BRINE_PSIG	
		LATDD	UIC_CLASS	UIC_REMARK_ID	UIC_MONTR_NRM	MN_H10H_INJ_BRINE_BBLS_SIGN	
		LONGDD	UIC_APPR_DATE	UIC_REMARK_DATE	UIC_MONTR_CO2	MN_H10H_INJ_BRINE_BBLS	
		INJ_SW	UIC_APPR_CC	UIC_REMARK_CCYY	UIC_MONTR_CO2A	\$MN_H10H_INJ_HYDRO_BBLS_SIGN	
		INJ_FW	UIC_APPR_YY	UIC_REMARK_MM	UIC_MONTR_GAS	MN_H10H_INJ_HYDROCARB_BBLS	
		INJ_FRAC_W	UIC_APPR_MONTH	UIC_REMARK_DD	UIC_MONTR_H2S	MN_H10H_INJ_GAS_MCF_SIGN	
			UIC_APPR_DAY		UIC_MONTR_POLYMER	MN_H10H_INJ_GAS_MCF	
			UIC_W14_DATE		UIC_MONTR_STEAM	MN_H10H_DOCUMENT_CYCLE	
			UIC_W14_CC		UIC_MONTR_AIR	MN_H10H_DOCUMENT_BATCH	
			UIC_W14_YY		UIC_MONTR_NITROGEN	MN_H10H_DOCUMENT_ITEM	
			UIC_W14_MONTH		UIC_MONTR_OTH		
			UIC_W14_DAY		UIC_MONTR_BW		
			UIC_H1_DATE		UIC_MONTR_LPG		
			UIC_H1_CC		UIC_MONTR_SW_PCT		
			UIC_H1_YY		UIC_MONTR_FW_PCT		
			UIC_H1_MONTH		UIC_MONTR_FRAC_WATER_PCT		
			UIC_H1_DAY		UIC_MONTR_NORM_PCT		
		PERF_Z_TD	UIC_LETTER_DATE		UIC_MONTR_CO2_PCT		

1	8	9	10	11	12	13	14	15
1 Table Name:	uif700a_H5	uif700a_H5_rmk	uif700a_enf	uif700a_enfact	uif700a_enfoth	uif700a_enfrmk	uif700a_mon10H	uif700a_H10vio
Dictionary Key (RRC_TAPE_RECORD_ID):	07	08	09	10	11	12	13	14
2								
3 Fields:	RRC_TAPE_RECORD_ID	RRC_TAPE_RECORD_ID	RRC_TAPE_RECORD_ID	RRC_TAPE_RECORD_ID	RRC_TAPE_RECORD_ID	RRC_TAPE_RECORD_ID	RRC_TAPE_RECORD_ID	RRC_TAPE_RECORD_ID
4	UIC_CNTL_NO	UIC_CNTL_NO	UIC_CNTL_NO	UIC_CNTL_NO	UIC_CNTL_NO	UIC_CNTL_NO	UIC_CNTL_NO	UIC_CNTL_NO
5	UIC_O_G_TYPE	UIC_O_G_TYPE	UIC_O_G_TYPE	UIC_O_G_TYPE	UIC_O_G_TYPE	UIC_O_G_TYPE	UIC_O_G_TYPE	UIC_O_G_TYPE
6 Legend	UIC_LEASE_ID	UIC_LEASE_ID	UIC_LEASE_ID	UIC_LEASE_ID	UIC_LEASE_ID	UIC_LEASE_ID	UIC_LEASE_ID	UIC_LEASE_ID
7 No highlight indicates table already exists with	UIC_DIST	UIC_DIST	UIC_DIST	UIC_DIST	UIC_DIST	UIC_DIST	UIC_DIST	UIC_DIST
8 displayed fields in Access database	UIC_WELL_NO	UIC_WELL_NO	UIC_WELL_NO	UIC_WELL_NO	UIC_WELL_NO	UIC_WELL_NO	UIC_WELL_NO	UIC_WELL_NO
9 Data exists in .csv file, but has not been analyze	UIC_API_FULL	UIC_API_FULL	UIC_API_FULL	UIC_API_FULL	UIC_API_FULL	UIC_API_FULL	UIC_API_FULL	UIC_API_FULL
10 or imported into Access database	UIC_H5_TEST_DATE_KEY	H5_REMARKS_TYPE	UIC_ENF_KEY	ENF_ACT_VIOL_DATE	ENF_OTH_COMP_METHOD	ENF_REMARKS_TYPE	UIC_H10H_MONTR_KEY	UIC_H10_VIOL_BEGIN_YEAR
11	UIC_H5_TEST_SEQ_NUM	H5_REMARKS	UIC_ENF_MAN_FILE_FLAG	ENF_ACT_VIOL_CC	ENF_OTH_ENFORCE_TYPE	ENF_REMARKS	UIC_H10H_MONTR_CC	UIC_H10_VIOL_BEGIN_MONTH
12	UIC_H5_DUE_DATE			ENF_ACT_VIOL_YY	ENF_OTH_COMPLAINT_NUM		UIC_H10H_MONTR_YY	UIC_H10_VIOL_END_YEAR
13	UIC_H5_DUE_CC			ENF_ACT_VIOL_MM			UIC_H10H_MONTR_MM	UIC_H10_VIOL_END_MONTH
14	UIC_H5_DUE_YY			ENF_ACT_VIOL_DD			UIC_H10H_MONTR_W_STATUS	UIC_H10_VIOL_CODE
15	UIC_H5_DUE_MM			ENF_ACT_VIOL_CODE			UIC_H10H_MONTR_CRUDE	UIC_H10_VIOL_LETTER_KEY
16	UIC_H5_DUE_DD			ENF_ACT_NOTICE_DATE			UIC_H10H_MONTR_GAS	UIC_H10_VIOL_LETTER_DATE
17	UIC_H5_RECEIVED_DATE			ENF_ACT_NOTICE_CC			UIC_H10H_MONTR_LPG	UIC_H10_VIOL_LETTER_YEAR
18	UIC_H5_RECEIVED_CC			ENF_ACT_NOTICE_YY			UIC_H10H_MONTR_OTHER	UIC_H10_VIOL_LETTER_MONTH
19	UIC_H5_RECEIVED_YY			ENF_ACT_NOTICE_MM			UIC_H10H_MONTR_PRESS_GT_ZERO	UIC_H10_VIOL_LETTER_DAY
20	UIC_H5_RECEIVED_MM			ENF_ACT_NOTICE_DD			UIC_H10H_MONTR_SURFACE_VESSEL	UIC_H10_VIOL_RESOLVE_DATE
21	UIC_H5_RECEIVED_DD			ENF_ACT_NOTICE_TYPE			UIC_H10H_MONTR_REC_FLG	UIC_H10_VIOL_RESOLVE_YEAR
22	UIC_H5_SCHEDULE_TYPE			ENF_ACT_COMP_DATE			UIC_H10H_MULT_WELL_CAVERN_FLAG	UIC_H10_VIOL_RESOLVE_MONTH
23	UIC_H5_SCHEDULE_FLAG			ENF_ACT_COMP_CC			UIC_H10H_MONTR_ISS_DATE	UIC_H10_VIOL_RESOLVE_DAY
24	UIC_H5_SCHEDULED_DATE			ENF_ACT_COMP_YY			UIC_H10H_MONTR_ISS_CC	UIC_H10_VIOL_RESOLVE_BY_FLAG
25 26 27 28 29 30	UIC_H5_SCHEDULED_CC			ENF_ACT_COMP_MM			UIC_H10H_MONTR_ISS_YY	UIC_H10_VIOL_P4_CERT_DTE_KEY
26	UIC_H5_SCHEDULED_YY			ENF_ACT_COMP_DD			UIC_H10H_MONTR_ISS_MM	UIC_H10_VIOL_P4_CERT_SECTION
27	UIC_H5_SCHEDULED_MM			ENF_ACT_COMP_METHOD			UIC_H10H_MONTR_ISS_DD	UIC_H10_VIOL_P4_CERT_REASON
28	UIC_H5_SCHEDULED_DD			ENF_ACT_SNC_FLAG			UIC_H10H_MONTR_REC_DATE	UIC_H10_VIOL_SEVER_LTR_DATE
29	UIC_H5_2ND_NOTICE_DATE			ENF_ACT_VIOL_ON_HOLD			UIC_H10H_MONTR_REC_CC	UIC_H10_VIOL_SEVER_LTR_YEAR
30	UIC_H5_2ND_NOTICE_CC						UIC_H10H_MONTR_REC_YY	UIC_H10_VIOL_SEVER_LTR_MONTH

vsp

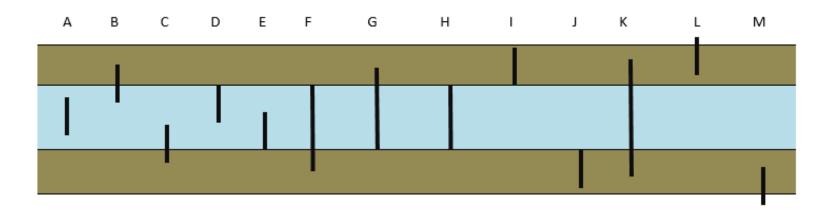

2020 RRC Well Bore Data Update

Well Bore Technical Data Root Segment Well Bore Completion Information Segment Well Bore Technical Data Forms File Data Well Bore Remarks Segment Well Bore Tubing Segment Well Bore Casing Segment Well Bore Perf Segment Well Bore Liner Segment Well Bore Formation Data Segment Well Bore Squeeze Segment Well Bore Usable Quality Water Protection Well Bore Old Location Segment Well Bore New Location Segment Well Bore Plugging Data Segment Well Bore Plugging Remarks Segment Well Bore Plugging Record Segment Well Bore Plugging Data Casing-Tubing record Well Bore Plugging Perfs Segment Well Bore Plugging Data Nomenclature Segment Well Bore Drilling Permit Number Well Bore Well-ID Segment 14B2 Well Segment H-15 Report Segment H-15 Remark Segment Senate Bill 126 (2-Yr Inactive Program) Segment Well Bore - Drilling Permit Status Segment

	1		2	3	4	5	6	7	8
1	Table Name:	dbf900	0 01root	dbf900_02compl	dbf900 03date	dbf900_04rmks	dbf900 05tube	dbf900 06case	dbf900 07perf
2	Dictionary Key (RRC TAPE RECORD ID):		01	02	03	04	05	06	07
3	Fields:	RRC_TAPE_RECORD	D_ID	RRC_TAPE_RECORD_ID	RRC_TAPE_RECORD_ID	RRC_TAPE_RECORD_ID	RRC_TAPE_RECORD_ID	RRC_TAPE_RECORD_ID	RRC_TAPE_RECORD_ID
4		WB_API_NUMBER		WB_API_NUMBER	WB_API_NUMBER	WB_API_NUMBER	WB_API_NUMBER	WB_API_NUMBER	WB_API_NUMBER
5		WB_NXT_AVAIL_SU	JFFIX	WB_OIL_CODE	WB_FILE_KEY	WB_FILE_KEY	WB_FILE_KEY	WB_FILE_KEY	WB_FILE_KEY
6	Legend	WB_NXT_AVAIL_H	OLE_CHGE_NBR	WB_OIL_DIST	WB_FILE_DATE	WB_RMK_LNE_CNT	WB_SEGMENT_COUNTER	WB_CASING_COUNT	WB_PERF_COUNT
7	No highlight indicates table already exists with	WB_FIELD_DISTRIC	т	WB_OIL_LSE_NBR	WB_EXCEPT_RULE_11	WB_RMK_TYPE_CODE	WB_TUBING_INCHES	WB_CAS_INCH	WB_FROM_PERF
8	displayed fields in Access database	WB_RES_CNTY_CO	DE	WB_OIL_WELL_NBR	WB_CEMENT_AFFIDAVIT	WB_REMARKS	WB_FR_NUMERATOR	WB_CAS_FRAC_NUM	WB_TO_PERF
9	Data exists in .csv file, but has not been	WB_ORIG_COMPL_	cc	WB_GAS_CODE	WB_G_5		WB_FR_DENOMINATOR	WB_CAS_FRAC_DENOM	WB_OPEN_HOLE_CODE
10	analyzed or imported into Access database	WB_ORIG_COMPL_	DATE	WB_GAS_RRC_ID	WB_W_12		WB_DEPTH_SET	WB_CAS_WT_TABLE	
11		WB_ORIG_COMPL_	CENT	WB_GAS_DIST	WB_DIR_SURVEY		WB_PACKER_SET	WB_WGT_WHOLE1	
12		WB_ORIG_COMPL_	YY	WB_GAS_WELL_NO	WB_W2_G1_DATE			WB_WGT_TENTHS1	
13		WB_ORIG_COMPL_	MM	WB_MULTI_WELL_REC_NBR	WB_COMPL_DATE			WB_WGT_WHOLE2	
14		WB_ORIG_COMPL_	DD	WB_API_SUFFIX	WB_COMPL_CENTURY			WB_WGT_TENTHS2	
15		WB_TOTAL_DEPTH		WB_ACTIVE_INACTIVE_CODE	WB_COMPL_YEAR			WB_CASING_DEPTH_SET	
16		WB_VALID_FLUID_I	LEVEL	WB_DWN_HOLE_COMMINGLE_CODE	WB_COMPL_MONTH			WB_MLTI_STG_TOOL_DPTH	
17		WB_CERT_REVOKE	D_DATE	WB_CREATED_FROM_PI_FLAG	WB_COMPL_DAY			WB_AMOUNT_OF_CEMENT	
18		WB_CERT_REVOKE	D_CC	WB_RULE_37_NBR	WB_DRL_COMPL_DATE			WB_CEMENT_MEASUREMENT	
19		WB_CERT_REVOKE	D_YY	WB_P_15	WB_PLUGB_DEPTH1			WB_HOLE_INCH	
20		WB_CERT_REVOKE	D_MM	WB_P_12	WB_PLUGB_DEPTH2			WB_HOLE_FRAC_NUM	
21		WB_CERT_REVOKE	D_DD	WB_PLUG_DATE_POINTER	WB_WATER_INJECTION_NBR			WB_HOLE_FRAC_DENOM	
22 23		WB_CERTIFICATION			WB_SALT_WTR_NBR			WB_TOP_OF_CEMENT_CASING	
23		WB_CERTIFICATION			WB_REMARKS_IND			WB_AMOUNT_CASING_LEFT	
24 25		WB_CERTIFICATION	N_DENIAL_YY		WB_ELEVATION				
25		WB_CERTIFICATION			WB_ELEVATION_CODE				
26		WB_CERTIFICATION			WB_LOG_FILE_RBA				
27		WB_DENIAL_REASC			WB_DOCKET_NBR				
28		WB_ERROR_API_AS							
29		WB_REFER_CORREC							
30		WB_DUMMY_API_N							
31		WB_DATE_DUMMY	-						
32 33		WB_NEWEST_DRL_							
33		WB_CANCEL_EXPIR	RE_CODE						
34		WB_EXCEPT_13_A							
35		WB_FRESH_WATER	LETTER CONTRACT						
	1	9	10	11	12		13	14	15
1	Table Name:	dbf900_08line	dbf900_09form	dbf900_10sqeze	dbf900_11fresh	dbf900	12oldloc	dbf900_13newloc	dbf900_14plug

1	9	10	11	12	13	14	15
1 Table Name:	dbf900_08line	dbf900_09form	dbf900_10sqeze	dbf900_11fresh	dbf900_12oldloc	dbf900_13newloc	dbf900_14plug
2 Dictionary Key (RRC_TAPE_RECORD_I	D): 08	09	10	11	12	13	14
3 Fields:	RRC_TAPE_RECORD_IE	RRC_TAPE_RECORD_ID	RRC_TAPE_RECORD_ID	RRC_TAPE_RECORD_ID	RRC_TAPE_RECORD_ID	RRC_TAPE_RECORD_ID	RRC_TAPE_RECORD_ID
4	WB_API_NUMBER	WB_API_NUMBER	WB_API_NUMBER	WB_API_NUMBER	WB_API_NUMBER	WB_API_NUMBER	WB_API_NUMBER
5	WB_FILE_KEY	WB_FILE_KEY	WB_FILE_KEY	WB_FILE_KEY	WB_LEASE_NAME	WB_LOC_COUNTY	WB_DATE_W3_FILED
6 Legend	WB_LINE_COUNT	WB_FORMATION_CNTR	WB_SQUEEZE_CNTR	WB_FRESH_WATER_CNTR	WB_SEC_BLK_SURVEY_LOC	WB_ABSTRACT	WB_DATE_WELL_BORE_PLUGGED
7 No highlight indicates table already exist	s with WB_LIN_INCH	WB_FORMATION_NAME	WB_SQUEEZE_UPPER_DEPTH	WB_TWDB_DATE	WB_WELL_LOC_MILES	WB_SURVEY	WB_PLUG_TOTAL_DEPTH
8 displayed fields in Access database	WB_LIN_FRAC_NUM	WB_FORMATION_DEPTH	WB_SQUEEZE_LOWER_DEPTH	WB_SURFACE_CASING_DETER_CODE	WB_WELL_LOC_DIRECTION	WB_BLOCK_NUMBER	WB_PLUG_CEMENT_COMP
9 Data exists in .csv file, but has not be	en WB_LIN_FRAC_DENON	1	WB_SQUEEZE_KIND_AMOUNT	WB_UQWP_FROM	WB_WELL_LOC_NEAREST_TOWN	WB_SECTION	WB_PLUG_MUD_FILLED
10 analyzed or imported into Access data	ase WB_SACKS_OF_CEME	т		WB_UQWP_TO	WB_DIST_FROM_SURVEY_LINES	WB_ALT_SECTION	WB_PLUG_MUD_APPLIED
11	WB_TOP_OF_LINER				WB_DIST_DIRECT_NEAR_WELL	WB_ALT_ABSTRACT	WB_PLUG_MUD_WEIGHT
12	WB_BOTTOM_OF_LIN	R				WB_FEET_FROM_SUR_SECT_1	WB_PLUG_DRIL_PERM_DATE
13						WB_DIREC_FROM_SUR_SECT_1	WB_PLUG_DRIL_PERM_NO
14						WB_FEET_FROM_SUR_SECT_2	WB_PLUG_DRIL_COMP_DATE
15						WB_DIREC_FROM_SUR_SECT_2	WB_PLUG_LOG_ATTACHED
16						WB_WGS84_LATITUDE	WB_PLUG_LOG_RELEASED_TO
17						WB_WGS84_LONGITUDE	WB_PLUG_TYPE_LOG
18						WB_PLANE_ZONE	WB_PLUG_FRESH_WATER_DEPTH
19						WB_PLANE_COORDINATE_EAST	WB_PLUG_FROM_UWQP_1
20						WB_PLANE_COORDINATE_NORTH	WB_PLUG_TO_UWQP_1
21						WB_VERIFICATION_FLAG	WB_PLUG_FROM_UWQP_2
22							WB_PLUG_TO_UWQP_2
23							WB_PLUG_FROM_UWQP_3
24							WB_PLUG_TO_UWQP_3
25							WB_PLUG_FROM_UWQP_4
26							WB_PLUG_TO_UWQP_4
27							WB_PLUG_MATERIAL_LEFT
28							WB_PLUG_OIL_CODE
29							WB_PLUG_OIL_DIST
30							WB_PLUG_OIL_LSE_NBR
31							WB_PLUG_OIL_WELL_NBR
32							WB_PLUG_GAS_CODE
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34							WB_PLUG_GAS_RRC_ID
34							WB_PLUG_GAS_DIST
35							WB_PLUG_GAS_WELL_NO

RRC Data Processing Summary



wsp

Figure 4.1.1: Database Processing Summary

TWDB Workflow

- Reproduced existing TWDB workflow
 - BRACS_TechTask_HB30-Criteria_Analysis_step6_InjectionWells_ClassII_for_WSP.docx
- Considered scenarios (see image below) as outlined in workflow
- Followed logic statements provided in document (example below, left)
- Did not perform manual review and edits as outlined in document
- Flagged "data quality issues" (logic below, right)

Queries used to identify well subsets

Wells that intersect the formation: A – Injection zone entirely within the formation "INJ_ZNE_TD" > "FM_TD" AND "INJ_ZNE_BD" < "FM_BD"

B – Injection zone straddles the top of the formation "INJ_ZNE_TD" < "kb_td_snp" AND "INJ_ZNE_BD" > "kb_td_snp" AND "INJ_ZNE_BD" < "kb_bd_snp"

C – Injection zone straddles the bottom of the formation

"INJ_ZNE_TD" > "kb_td_snp" AND "INJ_ZNE_TD" < "kb_bd_snp" AND "INJ_ZNE_BD" > "kb_bd_snp"

D – Injection zone starts at the top of the formation and ends within the formation "INJ_ZNE_TD" = "kb_td_snp" AND "INJ_ZNE_BD" < "kb_bd_snp" AND "INJ_ZNE_BD" > "kb_td_snp"

Flag data quality issues

- 14. Queries should be run to flag poor data quality. These wells will need further analysis to determine if they intersect the formation. These queries identify wells where:
 - a. the top and bottom depth of the injection zone are zero,
 - i. "INJ_ZNE_TD" =0 AND "INJ_ZNE_BD" =0
 - b. wells where the bottom depth is zero (top is valid), and
 - i. "INJ_ZNE_BD" =0 AND "INJ_ZNE_TD" <>0
 - c. wells where the top is deeper than the bottom (and the bottom is valid).
 - i. B_INJ_ZONE <> 0 AND "T_INJ_ZONE" > "B_INJ_ZONE"

Automated RRC Data Processing Tool

 Automates the process of downloading the RRC dataset for Class II injection wells and generates tables for the well intersection tool

- Tool input:

- RRC Underground Injection Control Database
 - Raw data download of uif700a.txt file
- RRC Oil and Gas Full Wellbore Database
 - Raw data download of dbf900.txt file

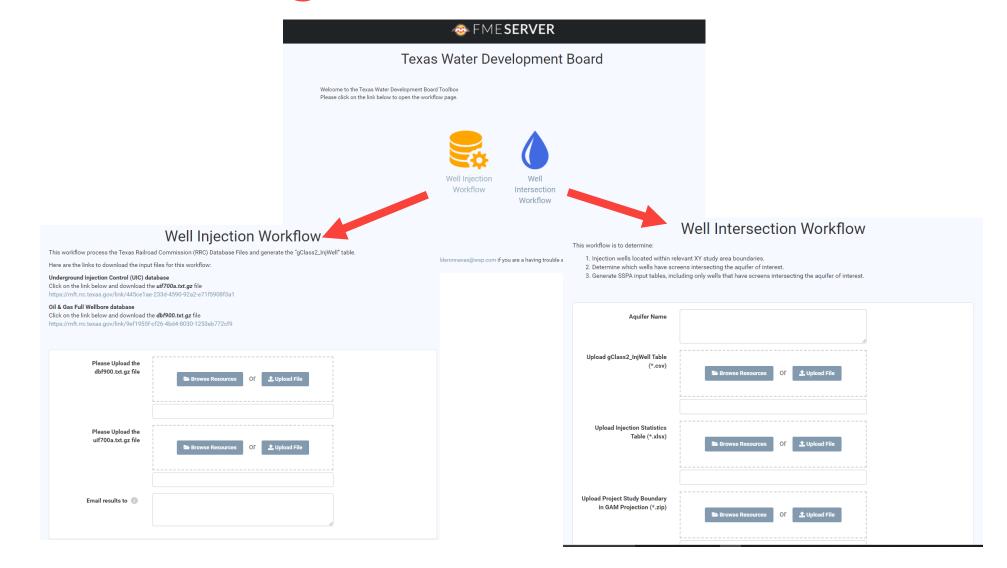
- Tool Output:

- Processed table containing information from both RRC datasets (gClass2_InjWell.csv)
- Statistics of all injection well data in Texas avg, min, and max injection rates (InjectionWell_Statistics.xslx)

Automated Well Intersection Tool

 Automates the process of locating the injection wells in aquifers and generates tables for the injectate mapping tool

- Tool Input:


- Aquifer study area boundaries (shapefiles)
- Aquifer hydrostratigraphic surfaces (rasters)
- Digital Elevation Model of Texas (raster)
- Processed table with RRC datasets (gClass2_InjWell.csv)
- Statistics of all injection well data (InjectionWell_Statistics.xslx)

- Tool Output:

 Processed table containing injection well rates (ft³/day), injection tops and bottoms, and injection start and stop dates

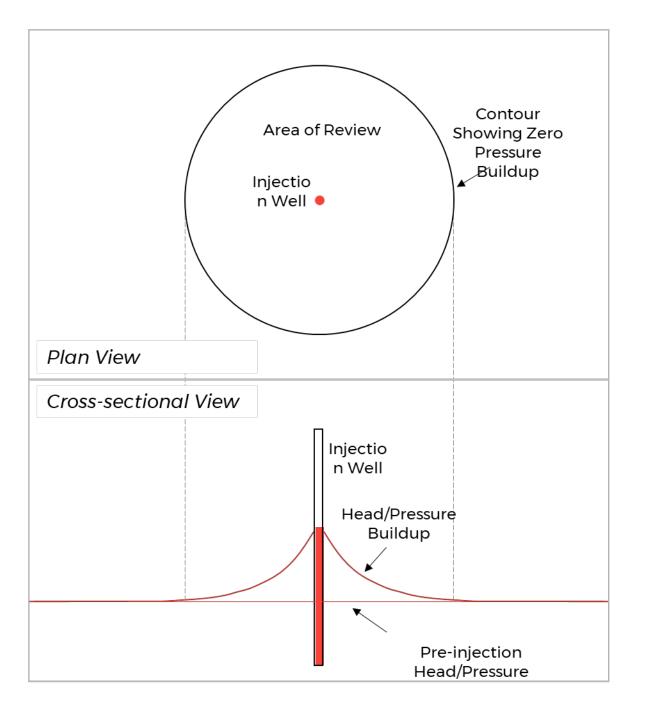
 Input table for Injectate Mapping Tool (AquiferName_InjectateMappingInput_Date.csv)

Automated Tools: Data Processing and Well Intersection Tools

Mapping Techniques – Processes

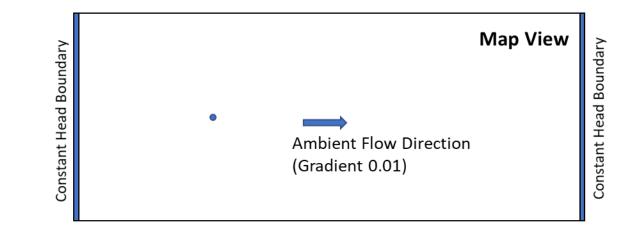
	Process	Modeling Technique	Data Availability	Meets Modeling Objective?
Simple	Injection flow hydraulics	Analytical solutions	Injection and aquifer data	No
_	Flow gradient	Analytical solutions	Regional flow gradients assumed	Yes
	Advection	Analytical solutions	Basic data is available	Yes
	Dispersion	Analytical solutions	Values need to be assumed	Yes
	Multiple wells	Numerical solutions	Injection well locations	Yes
	Density	Numerical solutions	Injectate and receiving water data	Yes
·	Heterogeneity	Numerical solutions	solutions Detailed well log data	
Complex	Geochemistry	Numerical solutions	Site-specific and well specific data	Yes

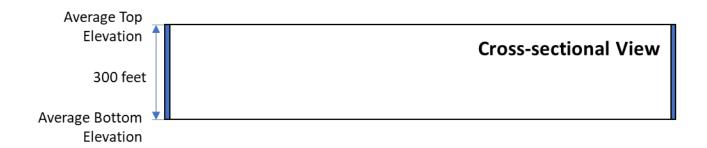
Mapping Techniques

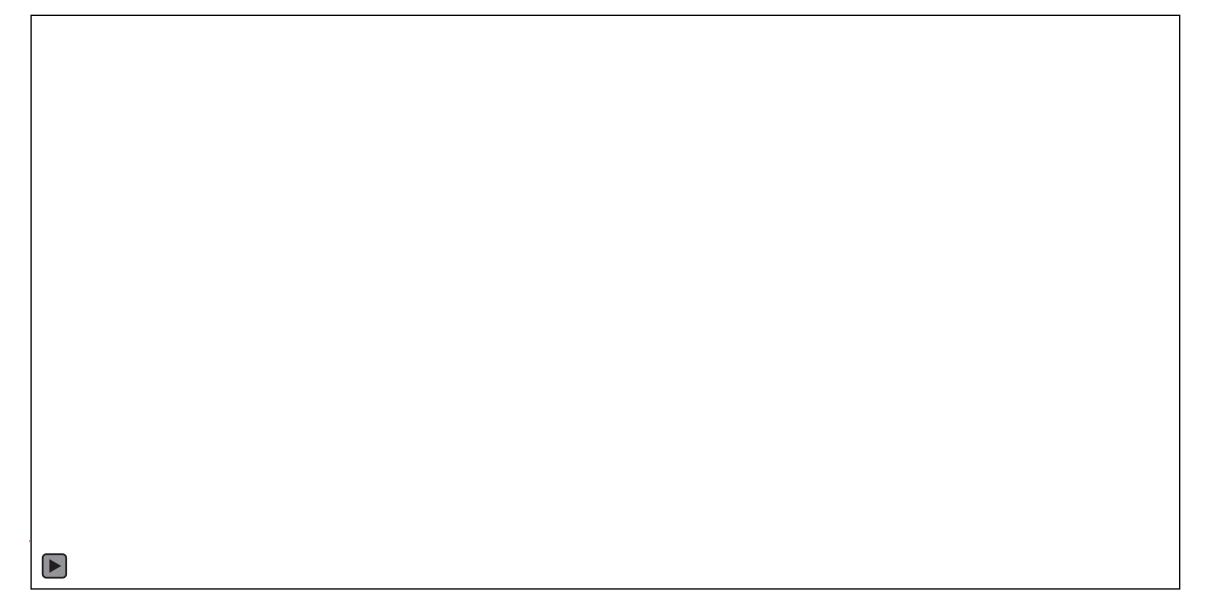

- 1. Analytical solutions:
 - Stable
 - Easy-to-use
 - Simplifying assumptions but exact solutions
 - EPA (1994), Bear & Jacobs (1965), Domenico-type
- 2. Numerical solutions :
 - Accommodate complex systems
 - Intensive data requirements
 - potentially unstable, require advanced users
 - Modflow 6

Mapping Techniques – Processes

	Process	Modeling Technique	Data Availability	Meets Modeling Objective?
Simple	Injection flow hydraulics	Analytical solutions	Injection and aquifer data	No
_	Flow gradient	Analytical solutions	Regional flow gradients assumed	Yes
	Advection	Analytical solutions	Basic data is available	Yes
	Dispersion	Analytical solutions	Values need to be assumed	Yes
	Multiple wells	Numerical solutions	Injection well locations	Yes
	Density	Numerical solutions	Injectate and receiving water data	Yes
•	Heterogeneity	Numerical solutions	Detailed well log data	Yes
Complex	Geochemistry	Numerical solutions	Site-specific and well specific data	Yes


Analytical Solutions (Drawdown/Mounding)


- Abundant literature on "Area of Review" or "Zone of endangering influence"
- head change, not migration


Analytical Solutions (Drawdown/Mounding)

- Heads stabilize over time
- Injectate keeps spreading

Analytical Solutions (Drawdown/Mounding)

Summary: Injection mounding

- Only addresses mounding
- No injectate migration
- Does not meet mapping objectives

Mapping Techniques – Processes

	Process	Modeling Technique	Data Availability	Meets Modeling Objective?
Simple	Injection flow hydraulics	Analytical solutions	Injection and aquifer data	No
_	Flow gradient	Analytical solutions	Regional flow gradients assumed	Yes
	Advection	Analytical solutions	Basic data is available	Yes
	Dispersion	Analytical solutions	Values need to be assumed	Yes
	Multiple wells	Numerical solutions	Injection well locations	Yes
	Density	Numerical solutions	Injectate and receiving water data	Yes
•	Heterogeneity	Numerical solutions	Detailed well log data	Yes
Complex	Geochemistry	Numerical solutions	Site-specific and well specific data	Yes

Analytical Solutions

Injectate migration is key

$$- EPA (1994) r(t) = \left(\frac{Qt}{\pi\phi b}\right)^{1/2}$$

- Domenico-type solution (Srinivasan, et. al, 2007) or Wexler, 1992

$$c(x, y, z, t) = \frac{c_o}{8} f_x^o(x, t) f_y(x, y) f_z(x, z),$$

where $f_x^o(x, t) = 2 \exp\left(-\frac{kx}{v}\right) u\left\{t - \frac{x}{v}\right\}$
where $u\left\{t - \frac{x}{v}\right\}$ is the step function given by,
 $u\left\{t - \frac{x}{v}\right\} = \begin{cases} 0 \text{ if } t \le \frac{x}{v}\\ 1 \text{ if } t > \frac{x}{v} \end{cases}$

vsp

Analytical Solutions

- Bear and Jacobs (1965)

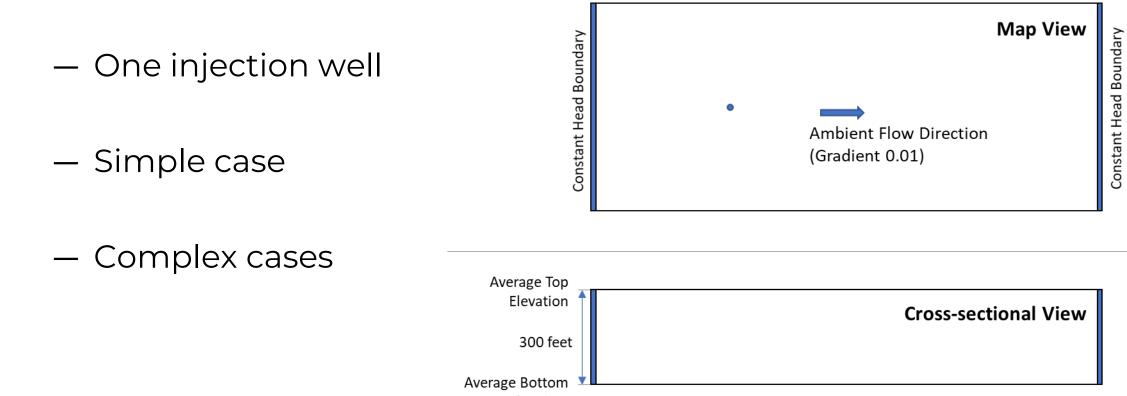
$$t_D = x_D - ln\{1 + x_D\}$$

$$t_D = \frac{2\pi q^2 b}{\phi Q} t$$

$$x_D = \frac{2\pi q b}{Q} \bar{x}$$

wsp

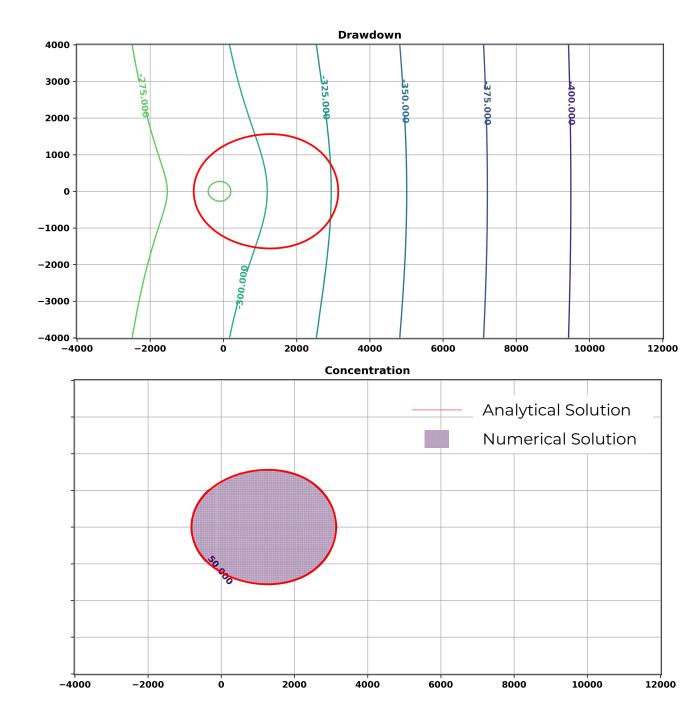
Assumptions – Aquifer


- Confined
- Homogeneous
- Isotropic
- Insignificant vertical gradient
- Infinite extent
- Steady-state flow field: horizontal gradient (i)
- No recharge or other sources/sinks: lumped into (i)

Assumptions – Injection Wells & Transport

Injection wells:

- fully efficient
- no wellbore storage effects
- Continuous screening only
 - Multiple screens lumped
- Variable-density ignored
 - Justification in report and through simulations
- No dispersion
- Non-reactive transport: conservative migration
- No vertical migration
- Single well analysis

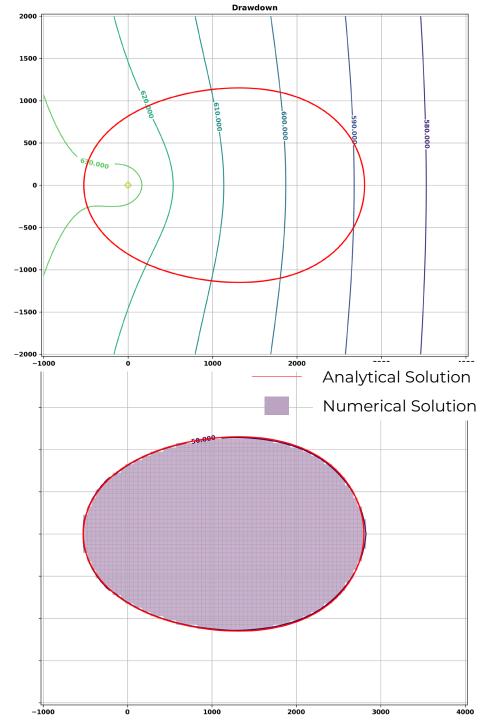

Analytical vs. Numerical Solution

Elevation

Analytical vs. Numerical

- One injection well
- Constant
 - head gradient
 - injection

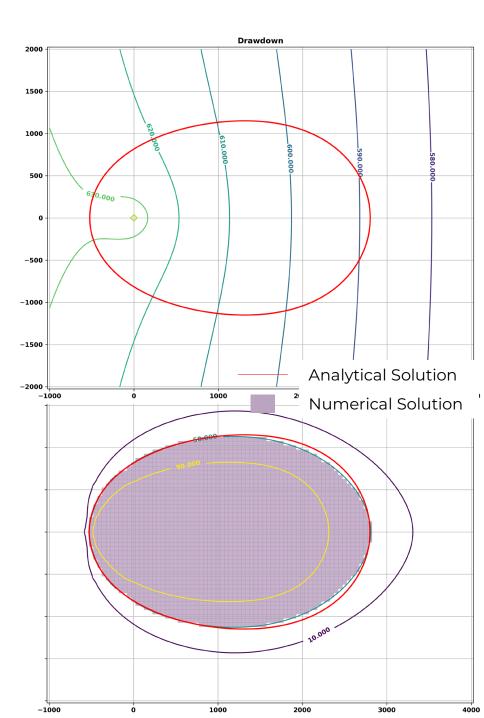
Summary: Advective migration


- Determines injectate migration
- Meets modeling objectives
- Data available
- Widely-used and accepted solutions
- Suitable analytical solutions include:
 - EPA (1994) considers radial flow only
 - Domenico-type solutions considers regional flow only
 - Bear and Jacobs (1965) considers radial and regional flow

Mapping Techniques – Processes

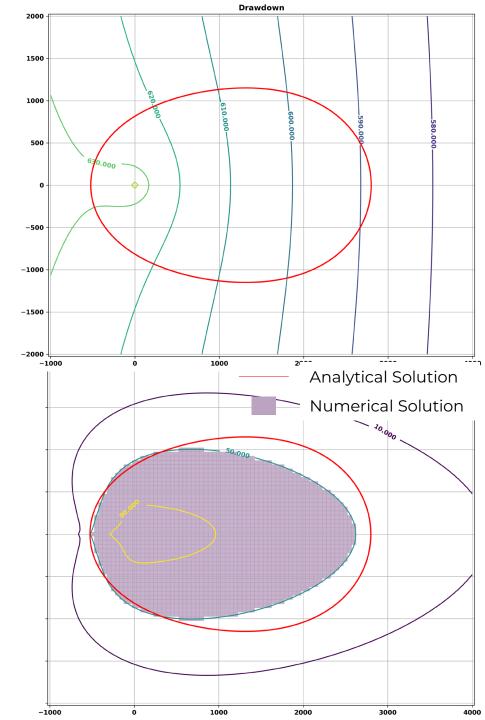
	Process	Modeling Technique	Data Availability	Meets Modeling Objective?
Simple	Injection flow hydraulics	Analytical solutions	Injection and aquifer data	No
	Flow gradient	Analytical solutions	Regional flow gradients assumed	Yes
	Advection	Analytical solutions	Basic data is available	Yes
	Dispersion	Analytical solutions	Values need to be assumed	Yes
	Multiple wells	Numerical solutions	Injection well locations	Yes
	Density	Numerical solutions	Injectate and receiving water data	Yes
▼	Heterogeneity	Numerical solutions	Detailed well log data	Yes
Complex	Geochemistry	Numerical solutions	Site-specific and well specific data	Yes

Effect of Dispersion


– No dispersion

wsp

Effect of Dispersion

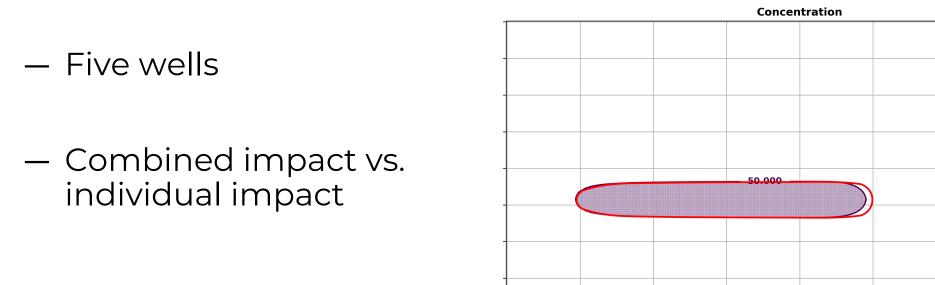

- Longitudinal dispersion = 40 feet
- Transverse dispersion = 1/10 LD

Effect of Dispersion

Longitudinal dispersion = 400 feet

— Transverse dispersion = 1/10 LD

Summary: Dispersion


- 50% isocontour represents average injectate migration
- Analytical solutions match average injectate migration
- Analytical solutions that ignore dispersion but consider radial flow:
 - EPA (1994)
 - Bear and Jacobs (1965)
- Analytical solution that considers dispersion but ignores radial flow:
 - Domenico-type solution

Mapping Techniques – Processes

	Process	Modeling Technique	Data Availability	Meets Modeling Objective?
Simple	Injection flow hydraulics	Analytical solutions	Injection and aquifer data	No
	Flow gradient	Analytical solutions	Regional flow gradients assumed	Yes
	Advection	Analytical solutions	Basic data is available	Yes
	Dispersion	Analytical solutions	Values need to be assumed	Yes
	Multiple wells	Numerical solutions	Injection well locations	Yes
	Density	Numerical solutions	Injectate and receiving water data	Yes
·	Heterogeneity	Numerical solutions	Detailed well log data	Yes
Complex	Geochemistry	Numerical solutions	Site-specific and well specific data	Yes

Analytical Solution

Numerical Solution

-4000

-2000

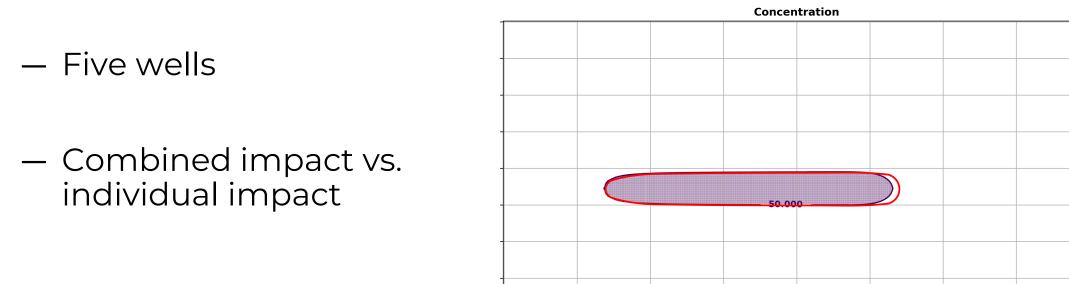
2000

4000

6000

8000

10000


12000

0

vsp

Analytical Solution

Numerical Solution

-4000

-2000

2000

4000

6000

8000

10000

12000

0

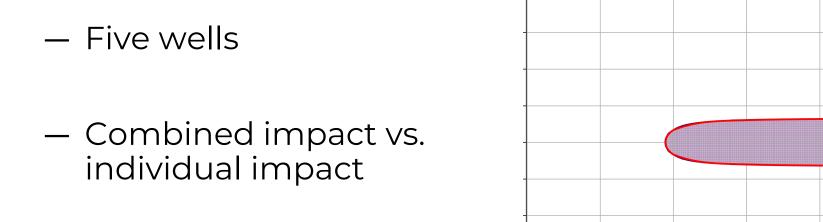
Analytical Solution

Concentration

4000

2000

0

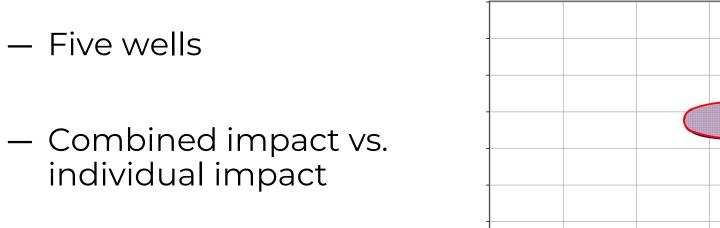

50.000

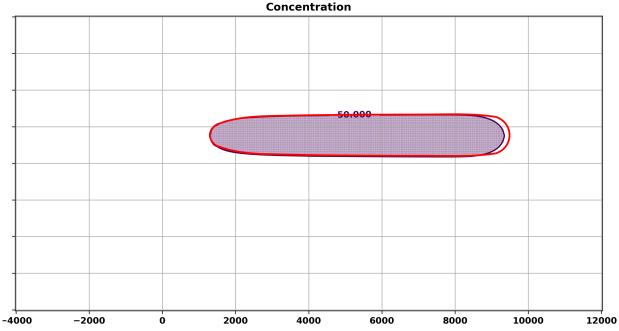
6000

8000

10000

12000

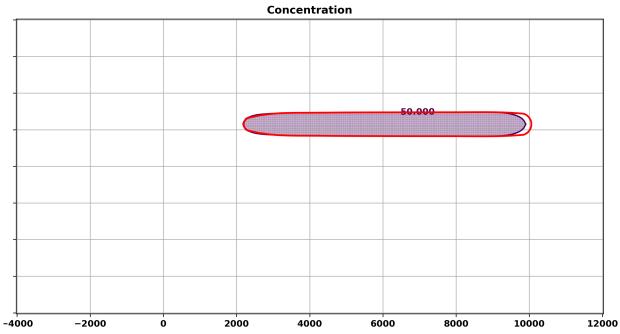


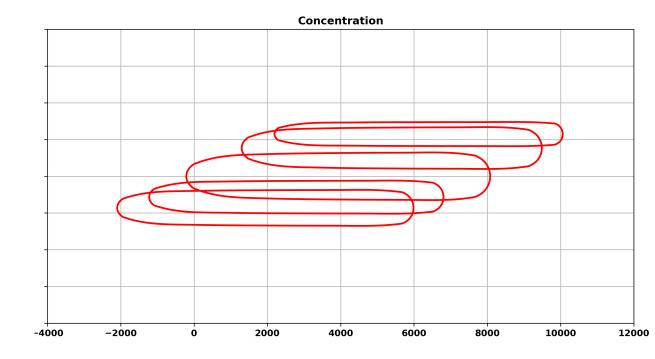

-4000

-2000

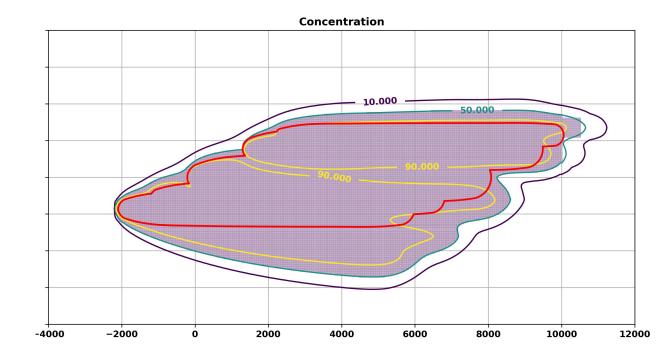
vsp

Analytical Solution Numerical Solution




Analytical Solution

Numerical Solution

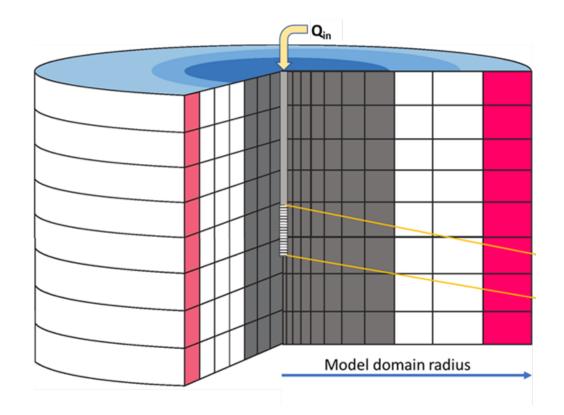


 Analytical solutions for individual wells

vsp

- Analytical solutions for individual wells (ensemble)
- Numerical solution

Summary: Multiple wells


- Analytical solutions estimate single well injectate migration
- Multiple wells in close vicinity may influence each other
- Analytical solutions may underestimate injectate migration from multiple wells in close vicinity
- Numerical solutions capable of estimating migration with multiple wells in close vicinity, albeit at a high cost
- Suitable numerical solution includes:
 - MODFLOW 6

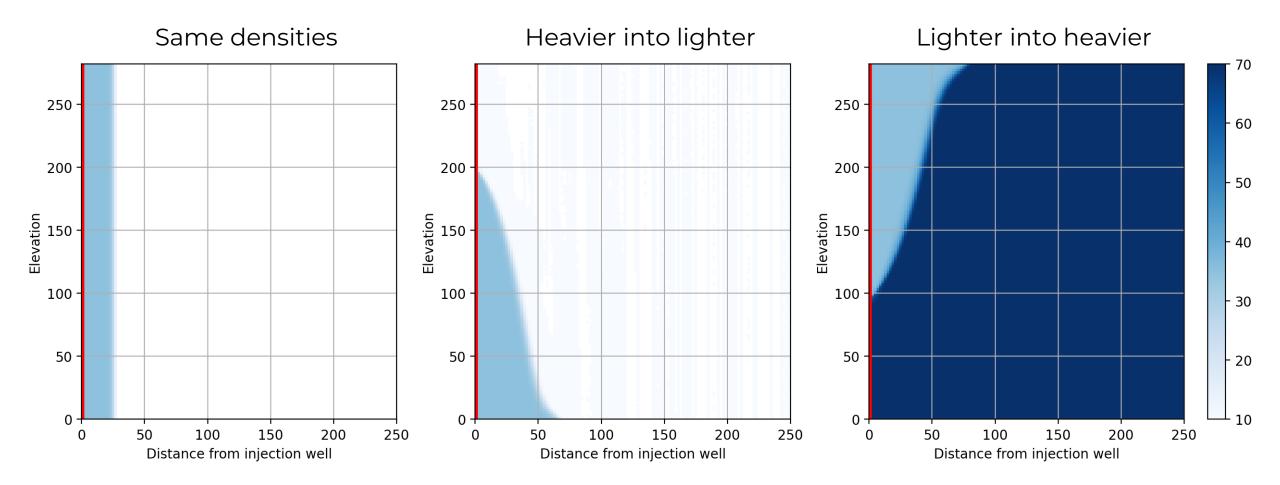
Mapping Techniques – Processes

	Process	Modeling Technique	Data Availability	Meets Modeling Objective?
Simple	Injection flow hydraulics	Analytical solutions	Injection and aquifer data	No
	Flow gradient	Analytical solutions	Regional flow gradients assumed	Yes
	Advection	Analytical solutions	Basic data is available	Yes
	Dispersion	Analytical solutions	Values need to be assumed	Yes
	Multiple wells	Numerical solutions	Injection well locations	Yes
	Density	Numerical solutions	Injectate and receiving water data	Yes
•	Heterogeneity	Numerical solutions	Detailed well log data	Yes
Complex	Geochemistry	Numerical solutions	Site-specific and well specific data	Yes

Effect of Density

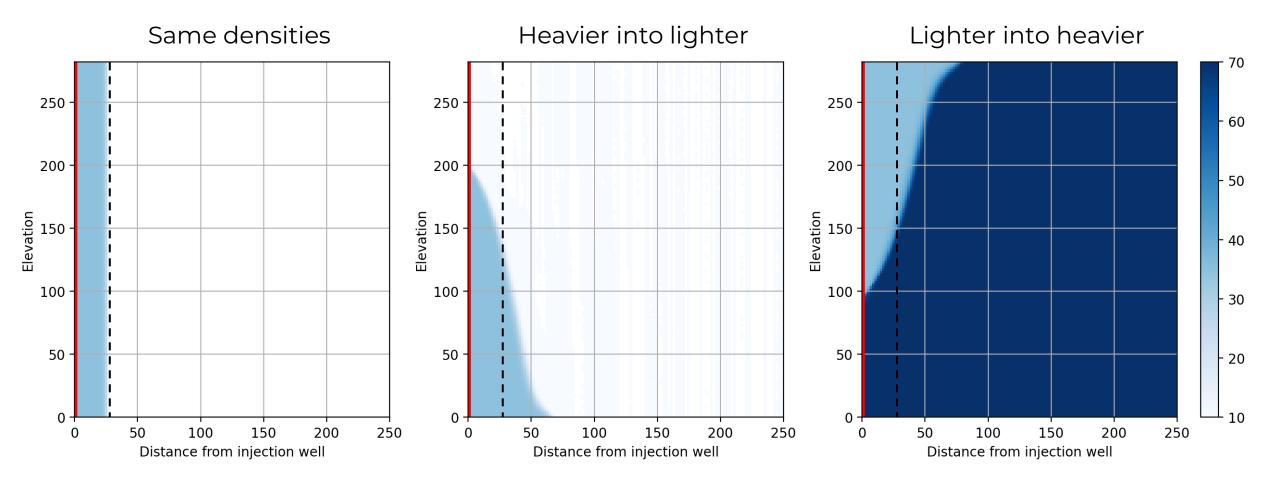
- Axisymmetric model
- Injection
 - Fully penetrating well
 - Partially penetrating well
- Density effects evaluated
- Isotropic conditions assumed

Effect of Density Simulations


- Injected water at seawater density (TDS = 35 g/l); receiving water at TDS = 10 g/L
 - Heavier into lighter
- Injected water at seawater density (TDS = 35 g/l); receiving water at TDS = 35 g/L

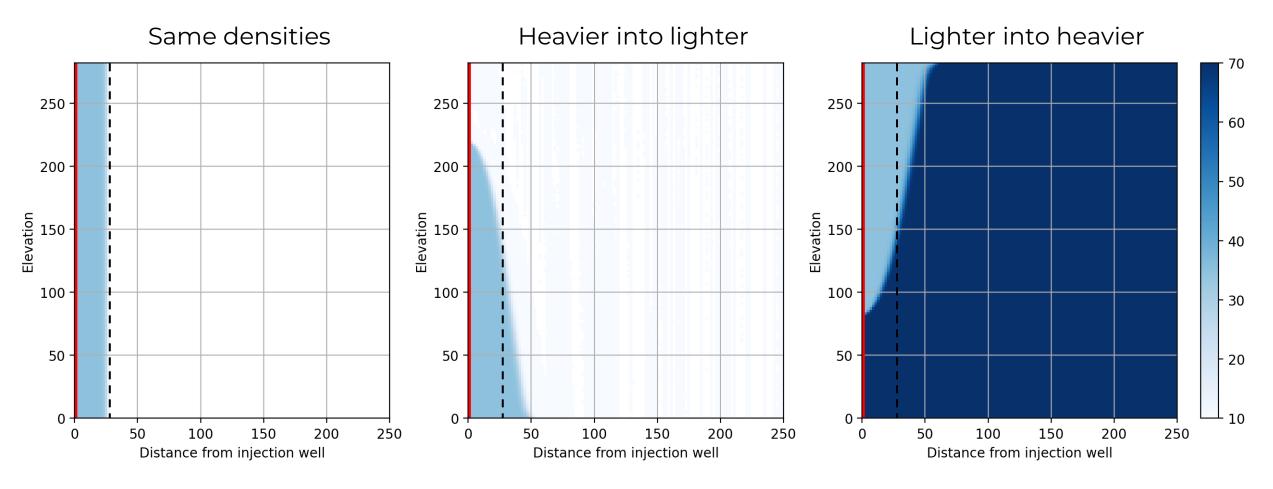
- Same densities

 Injected water at seawater density (TDS = 35 g/l); receiving water at TDS = 70 g/L


- Lighter into heavier

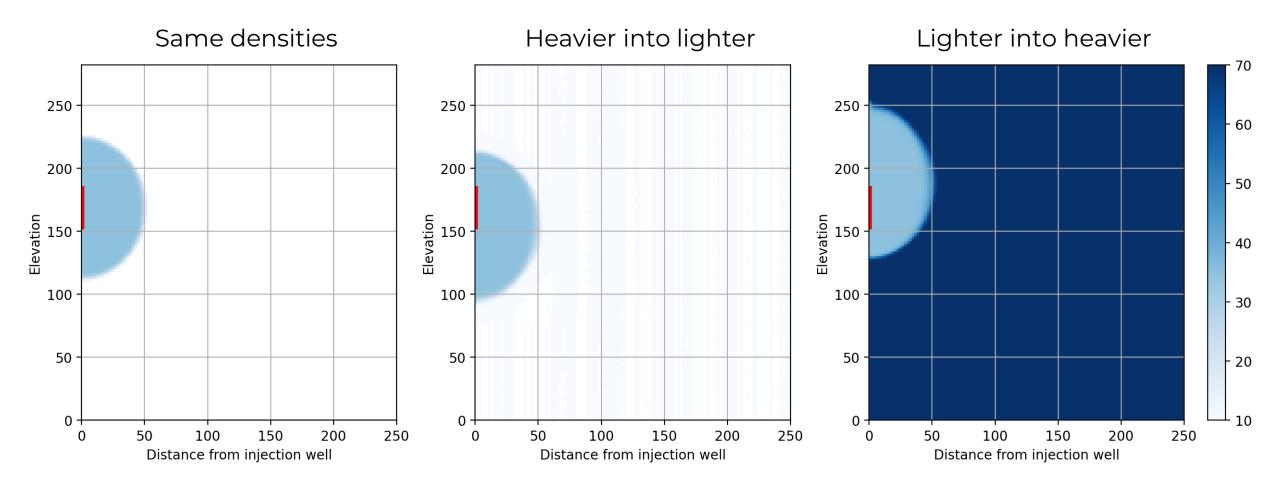
Fully Penetrating Well

NS

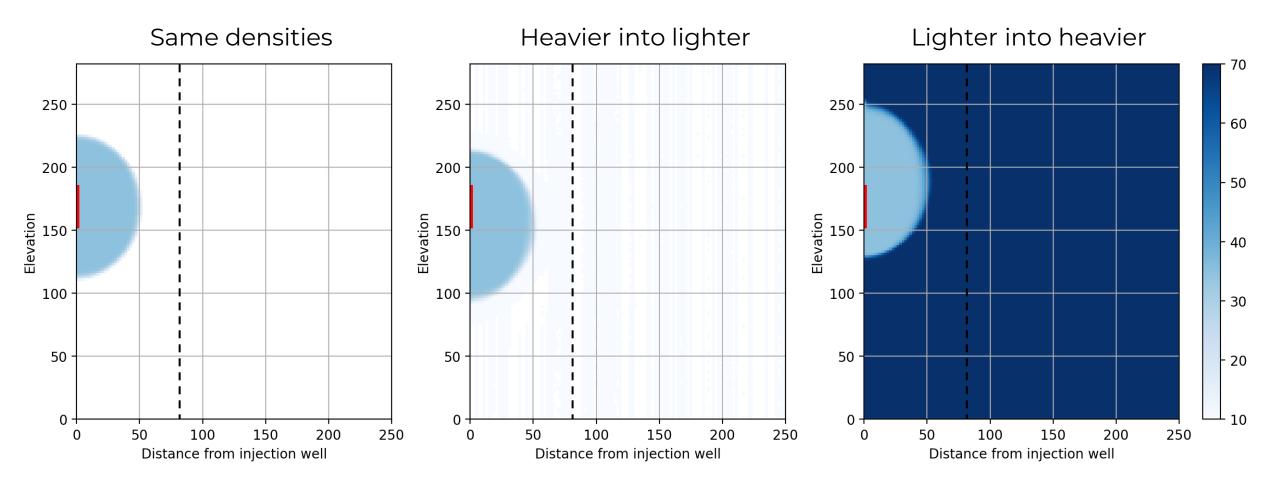

Fully Penetrating Well

NSD

---- Proposed Analytical Solution (Bear and Jacobs, 1965)

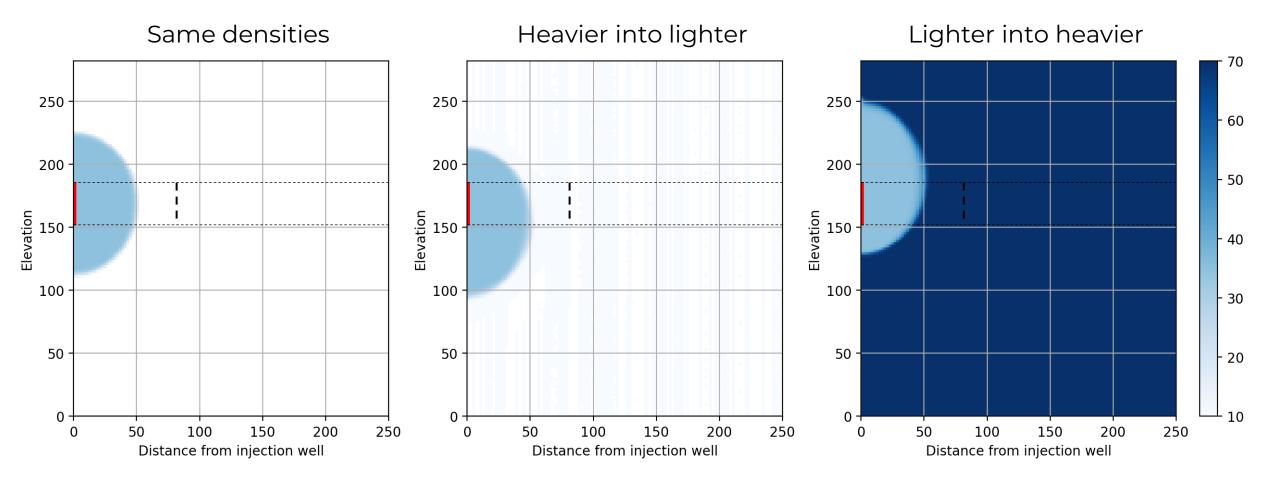

Fully Penetrating Well – With Anisotropy of 10

\\S|


----- Proposed Analytical Solution (Bear and Jacobs, 1965)

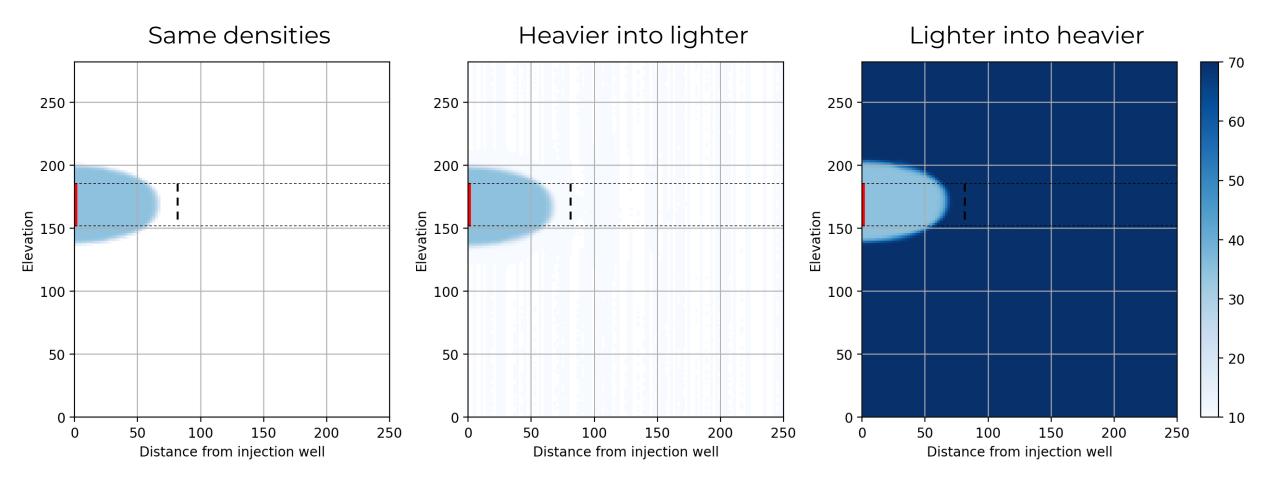
Partially Penetrating Well

NS


Partially Penetrating Well

115

---- Proposed Analytical Solution (Bear and Jacobs, 1965)


Partially Penetrating Well

\\S[]

---- Proposed Analytical Solution (Bear and Jacobs, 1965)

Partially Penetrating Well – With Anisotropy of 10

NS D

---- Proposed Analytical Solution (Bear and Jacobs, 1965)

Summary: Density-effects

- Density may vertically stratify injectate
- Anisotropy
 - Limit vertical spread of injectate
 - needs site-specific information
- Migration underestimated in fully penetrating wells
- Migration overestimated in partially penetrating wells
- 2/3 wells of analyzed wells partially penetrating
- Modeling variable-density complex
 - Not suitable for regional-scale studies
- Suitable numerical solutions include:
 - SEAWAT; USG-Transport; MODFLOW 6, FEFLOW, SUTRA, HST3D

Mapping Techniques – Processes

	Process	Modeling Technique	Data Availability	Meets Modeling Objective?
Simple	Injection flow hydraulics	Analytical solutions	Injection and aquifer data	No
	Flow gradient	Analytical solutions	Regional flow gradients assumed	Yes
	Advection	Analytical solutions	Basic data is available	Yes
	Dispersion	Analytical solutions	Values need to be assumed	Yes
	Multiple wells	Numerical solutions	Injection well locations	Yes
	Density	Numerical solutions	Injectate and receiving water data	Yes
	Heterogeneity	Numerical solutions	Detailed well log data	Yes
Complex	Geochemistry	Numerical solutions	Site-specific and well specific data	Yes

Not discussed in detail

Summary: Heterogeneity & Geochemistry

Modeling issues:

- Highly complex, requires intensive resources
- Needs more data than is available
- Not suitable at regional-scale studies
- Suitable numerical solutions include:
 - PHT3D, PHREEQC, USG-Transport

Mapping Techniques – Decision Tree

Drocoss	Modeling objective by technique				
Process	EPA 1994	Bear & Jacobs	Domenico-type	MODFLOW 6	
Injection flow hydraulics	N/A	N/A	N/A	N/A	
Advection-radial flow	Yes	Yes	No	Yes	
Advection-ambient flow	No	Yes	Yes	Yes	
Dispersion	No	No	Yes	Yes	
Multiple wells	No	No	No	Yes	
Density	No	No	No	Yes	
Heterogenity	No	No	No	Yes	
Geochemistry	No	No	No	Yes	

Mapping Techniques – Decision Tree

\\S[]

Process	Marginal Utility				
Process	EPA 1994	Bear & Jacobs	Domenico-type	MODFLOW 6	
Injection flow hydraulics	N/A	N/A	N/A	N/A	
Advection-radial flow	High	High	Low	Low	
Advection-ambient flow	N/A	High	High	Low	
Dispersion	N/A	N/A	High	Low	
Multiple wells	N/A	N/A	N/A	Low	
Density	N/A	N/A	N/A	Low	
Heterogenity	N/A	N/A	N/A	Low	
Geochemistry	N/A	N/A	Low	Low	

Mapping Techniques – Decision Tree

Process	Pertinence				
Process	EPA 1994	Bear & Jacobs	Domenico-type		
Injection flow hydraulics	N/A	N/A	N/A		
Advection-radial flow	Yes	Yes	No		
Advection-ambient flow	No	Yes	Yes		
Dispersion	No	No	No		
Multiple wells	No	No	No		
Density	No	No	No		
Heterogenity	No	No	No		
Geochemistry	No	No	No		

vsp

Bear and Jacobs: Acceptable in TX

Texas Aquifer Storage & Recovery (ASR) Applet

Main More info How to use

Aquifer Storage and Recovery [30 TAC §331.2(8)]: "The injection of water into a geologic formation, group of formations, or part of a formation that is capable of underground storage of water for later retrieval and beneficial use."

The movement of injected waters into a confined aquifer is controlled both by the natural flow patterns in an aquifer and by the flow patterns generated during injection and pumping of water from wells. Understanding the movement of injected waters is essential for predicting the efficiency of later retrieval (i.e., recovery efficiency).

The TxASR App determines recoverability for a single ASR well under steady flow conditions. TxASR is based on the analytical solution of the *Complex Potential* Function for combined flow in the (x, y) plane derived by Bear and Jacobs (1965).

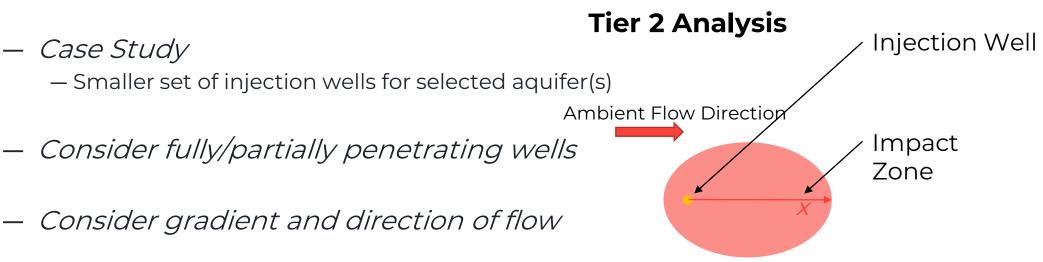
$$f(z)=\phi+i\psi=-q_0z-rac{Q_i}{2\pi B}ln(z); \hspace{1em} z=x+iy$$

Where:

 $\phi = K\varphi = velocity \ potential$

 $\varphi = piezometric head$

 $\psi = stream function$


NSD

Recommendation

- Recommended modeling techniques
 - Tier 1 analysis EPA (1994) assumes radial flow
 - Tier 2 analysis Bear and Jacobs (1965) considers radial and regional flow
- Tier 3 analysis considered but not recommended
 - Requires intensive resources (staff training, effort, and computational time)
 - For very selective areas with high Class II well density

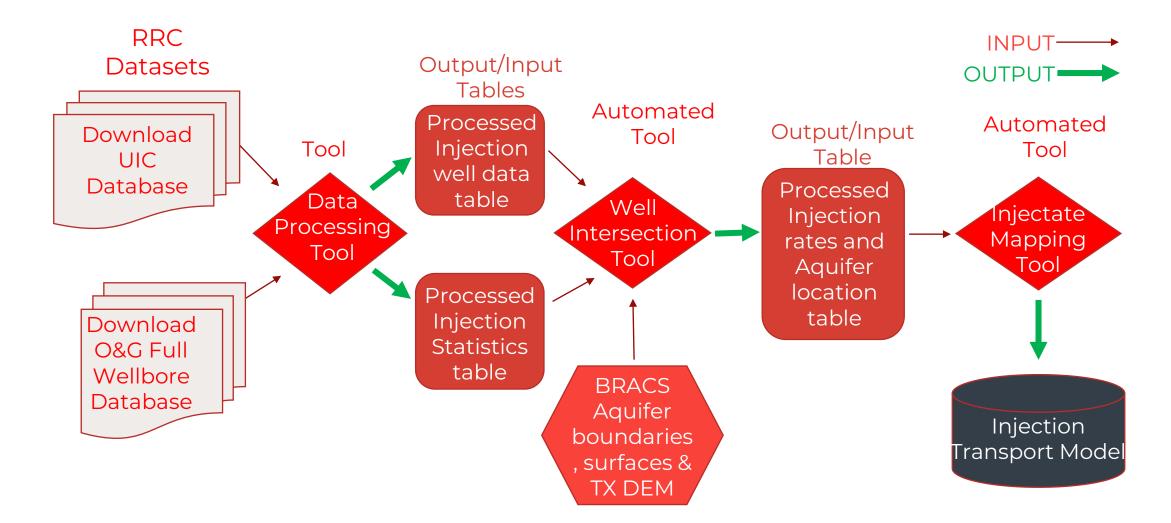
Tiered Analysis

- Tier 1 Analysis: Phase II
 - Potential impact zone considering (i)
 - but ignoring direction
- Tier 2 Analysis
 - Bear and Jacobs (1965)

Tier 1 Analysis

Injection Well

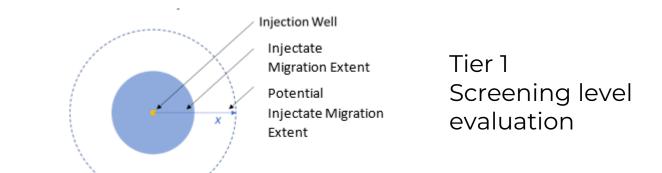
Impact


Potential

Impact

Zone

Zone


Workflow

wsp

Injectate Mapping Techniques

- EPA 1994 - assumes no ambient hydraulic gradient

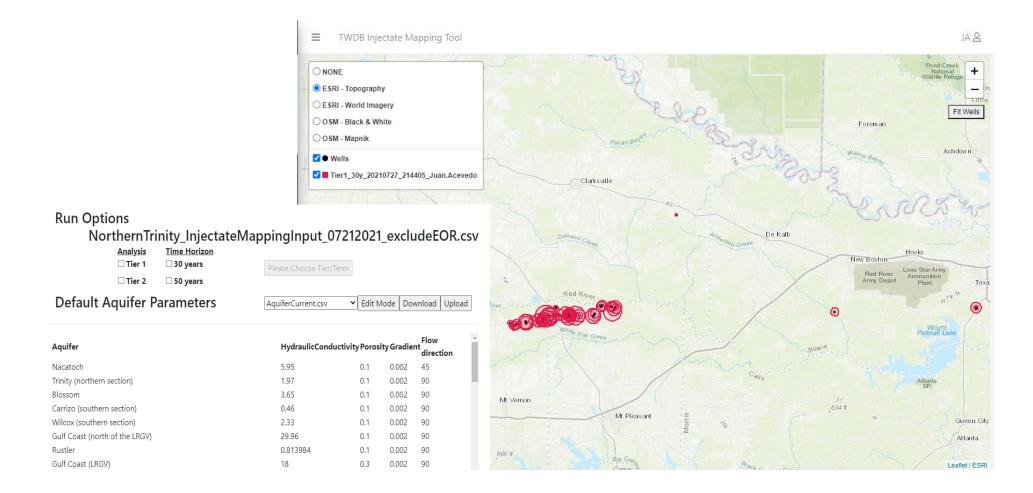
- Bear and Jacobs 1965 - includes ambient hydraulic gradient

Automated Tool: Injectate Mapping Tool

Applies the EPA 1994 and Bear and Jacobs 1965 analytical solutions to the injection well dataset

- Tool Input:

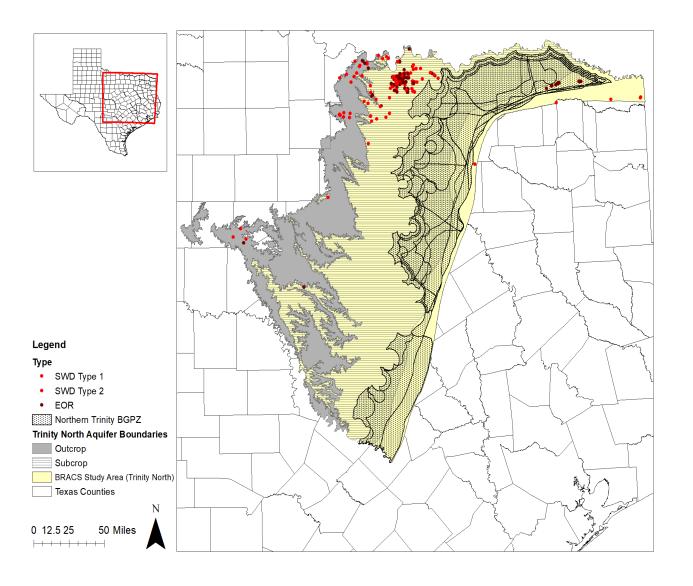
 Table output from Well Intersection Tool (AquiferName_InjectateMappingInput_Date.csv)

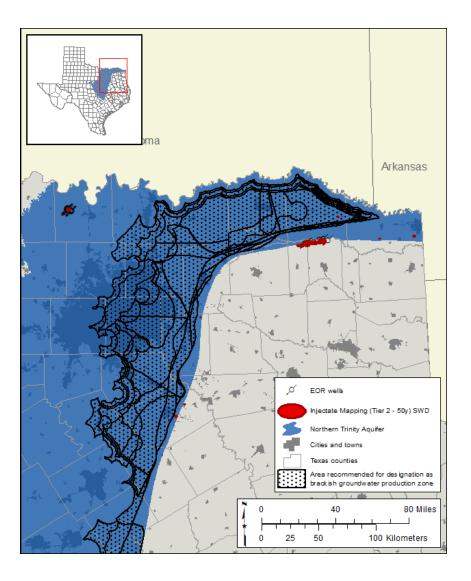

- Tool Output:

- Shapefile of injectate transport model (AquiferName_TierNumber_TimePeriod_Date_Username.shp)
 - Shapefile contains table with aquifer parameters used for modeling process as well as injection transport distances for accurate record keeping

- Tool abilities:

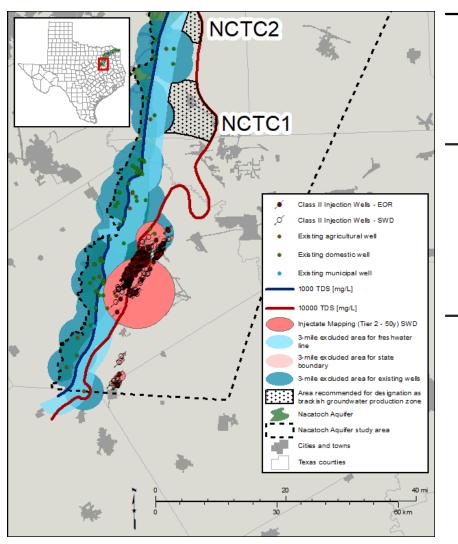
- BRACS staff can edit aquifer parameters as necessary
- BRACS staff can decide to apply Tier 1 (EPA 1994) or Tier 2 (Bear and Jacobs 1965) analysis on dataset for 30- to 50-year periods


Automated Injectate Mapping Tool


\\S])

WSP Testing – Northern Trinity Aquifer

- Case study
- 260 Class II injection wells
- 123 SWD wells
- 137 EOR wells



BRACS Testing – Northern Trinity Aquifer

- BRACS staff replicated
 WSP
- 81 Class II Injection wells
 - 59 SWD
 - 22 EOR
- Largest injection radius
 1.5 miles

BRACS Testing – Nacatoch Aquifer

- Additional testing of workflow procedures on Nacatoch Aquifer
- Original designation (2019)
 525 Class II wells 84 SWD
 441 EOR
 Updated Methods (2021)
- Updated Methods (2021) — *435 Class II wells* —60 SWD

-375 EOR

*Largest injection radius*6 miles

Workgroup Feedback

- Five workgroup meetings

- Don't apply inject mapping tool to EOR wells
 - Suggested to map top and bottom of production areas to avoid enhanced oil recovery wells – future project
- Contact Schlumberger EOR Mapping team to discuss modeling methods
 - Met with them and they agreed on methods for mapping subsurface injectate transport
- Contact EPA about a specific modeling method and obtain information
 - Compared Zone of Endangering Influence calculations with our analytical solutions – analytical solutions provided more conservative estimate on injection transport

Key limitations

- Generic tool based on simplifying assumptions.
- Site-specific details missing
 - local well injection effects, boundary flows, presence of faults and fractures, formation stratigraphic details, heterogeneity
- Density effects ignored
 - possible sinking or rising of plume into lower or upper formation ignored
- Cannot simulate migration into adjacent aquifer formations
- Vertical separation of injected water head within the aquifer cannot be simulated
 - *anisotropy can potentially play an important role in real-world scenarios if continuous clay units are present*

Key limitations

- Aquifer data availability
- Injection well data availability
 - incomplete or erroneous data
- Effects of multiple wells
 - influence of one injection well on another
 - use numerical models, if necessary
- Injectate mapping tool provides visualization of subsurface transport of injectate
 - not actual buffer distances